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Abstract  
Nowadays, game environments are used not only for entertainment purposes such as playing, 

but also as simulation tools for various scientific researches. Machine Learning (ML) 

algorithms, on the other hand, are efficient Artificial Intelligence tools, used in software 

applications for purposes such as predicting data patterns or for software optimizations. In 

this work, a time analysis is performed on two use cases utilizing ML in a complex Real-

Time Strategy game environment. The first use case deals with validation purposes of the 

real-time game space, and the second use case is designed for gathering time data during real-

time ML usage. Considering the time component is crucial for understanding the ML time 

usages, and to allow for even faster adoption of ML in all branches of software development. 

 

Keywords  1 
Time analysis, game environment, Machine Learning, game use cases  

1. Introduction 

Nowadays, games are more than just an entertainment medium. They are also interesting for 
research, which otherwise doesn't need to connect directly to the expansion of knowledge in the Game 

domain. Domain areas such as Health [1], Cultural Heritage [2], Military studies and Education [3], 

Social studies [4], and many more, are all benefiting from them. That is because virtual game worlds 
are a prosperous source of information, and their data can serve as a (never ending) input stream to 

the algorithms/models/procedures being researched. For example, if researchers want to validate a 

novel algorithm, they could do that by running simulations within game worlds utilizing their diverse 
and rich game data. Not to mention that running such simulations is very cheap (e.g., it is cheaper to 

run simulations of drones flying in a packed virtual city than in the real world). The amount of data 

production within game worlds is also "infinite" (limited only by the computing power of modern 

computers), due to the interlinking of a large number of aspects (e.g., the aspect of the intertwining of 
environmental elements). The game world can be seen as a spatial form (i.e., spatial features) of the 

game, allowing the player to play a video game in a virtual world [5]. Also, note that the game world 

is connected closely to the game space (described in subchapter 2.1), because multiple game worlds 
can be created in one game space. For example, the game can be taking place in a virtual, as well as a 

physical world (e.g., trans-reality games [6]). 

Machine Learning (ML), which is a sub-branch of Artificial Intelligence (AI), tries to use (past) 
experiences (e.g., experiences gained while operating in simulation environments), to improve the 

performance in interpreting patterns, based on which people or machines can then perform specific 

tasks [7]. Also, the concept of learning, in general, represents a model built on a sample of data (e.g., 

data classification), based on which people or machines make (future) decisions (e.g., on new/related 
data that were not previously used in building the model). 
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In this work, the domain of ML is combined with the Game domain. Specifically, the ML is used 

in two complex use cases to gather time data, while the use cases are being executed. Such time data 
are necessary if we want to learn under what limits (i.e., time frames or time intervals) the usage of 

ML is possible. Specifically, with time analysis, we want to establish if the ML can be used in real-

time (e.g., soft real-time).   

The article is structured as follows. Chapter two presents the necessary domains related to the 
games and our work. The ML domain and game agents are explained in Chapter three. Chapter four 

presents both case studies. Conclusions are given in Chapter five. 

2. Game domains and their related works 

The presentation of the main game domains utilized in the use cases is made in this Chapter. The 
game environments and the theory behind estimating the time complexities when operating in such 

environments are described first. Second, the Real-Time Strategy (RTS) game environments are 

presented, along with the aspects that make them complex, and, therefore, capable simulation tools. 
Third, a description is provided regarding the real-time component of real-time games.  

2.1. Game environments and their estimated time complexities 

Game space can be described as an environment that implements the rules of the game, game 

objects (along with all their properties pre-set by the developer), and connections (or relations) 
between these objects. If the properties of the objects change, it can be said that it is still the same 

game, but in a different variation. In other words, each unique parameter setting of a specific game 

creates a new game variant, and the game space is defined as a high-dimensional set of unique game 
variants, with a point in game space therefore being a specific vector of the game parameters [8]. In 

modern times, game spaces are created mainly for commercial purposes (e.g., to sell a new mobile 

game), but they are also gaining traction for experimental evaluation [9] of algorithms, techniques, 

and models [10, 11]. Game spaces offer plenty of opportunities for tackling many research problems 
and possibilities for complex experiments, because the game spaces intertwine many aspects (e.g., 

hierarchial abstraction aspect used in decision process). That reflects both in the large state space and 

in the large action space. The state space is defined as the set of all states that can occur in the game 
space, and the action space is defined by all possible actions that can be performed in the state space. 

The state represents the set of game attributes and their values [12], and the action is the choice by 

which the player influences the state of the environment [13]. The set of all possible combinations of 
states and actions forms a full search space. But, such a full search space also includes the states that 

are illegal from the game rules point of view (e.g., a game board of the game Tic-Tac-Toe filled with 

only crosses). Therefore, when the game rules are applied (and the game always begins in the legal 

starting state), the size of the (legal) search space is reduced. 
However, because the search space is probably not the best way to present the game in a manner 

by which the clarity of the actual complexity of the game would be shown, a game tree is preferred 

for such presentation. With such a tree, nodes are possible states of the game, and connections are 
possible legal actions that arise from the ground state and produce new states/nodes. The leaves of the 

search tree (or end nodes) are the states in which the game is decided. An example of a section of 

such a game tree for the Tic-Tac-Toe board game is shown in Figure 1. 
The Figure 1 example demonstrates how the course of the game (i.e., individual states and the 

actions arising from them) can be presented with a game-tree. Over such a tree computational 

complexity can be given (game-tree complexity), which is presented as a tree search in the "min-max 

style" algorithm (i.e., it is an estimate of the number of positions that must be evaluated by searching 
with the min-max algorithm to determine the value of the initial state), and is written with the 

estimated complexity of bd [14]. The symbol b indicates the (estimated) average branching factor, and 

the symbol d is the (estimated) average depth of the game tree. The symbols b and d are often only 
estimates, and they can also be represented as a range interval, because the exact value cannot be 

given due to the magnitude of the problem. For a game of chess, such an estimate is b ≈ 35 and d ≈ 
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80, while, for one of the most complex game genres, the RTS games, the estimate is in the range of b 

≈ 30
60

 and d ≈ 36,000 [15]. 

 
Figure 1: Game-tree representation for the Tic-Tac-Toe game 

2.2. Real-Time Strategy game environments 

RTS games are one of the subcategories of the computer Strategy game genre. The adjective 

strategic in the name of RTS games represents the highest form of the decision-making process the 
player performs while playing the game, as the player must make decisions constantly about the next 

moves (called actions). The notion of real-time, however, appears in the name because the game 

passes from one game state to another at such a speed (in the range of a few tens of milliseconds) that 
it seems to a person that the game takes place in real-time (more about the real-time component is 

explained in the next subchapter 2.3). 

RTS games are most often created as (fantasy) combat simulations (e.g., the human race versus a 
fictional space race). Before the game starts every player has a choice regarding which side (or race) 

they want to play. Each side is shaped with specifics in the appearance, characteristics, and behavior 

of game defense units and buildings. Defense units are divided into mobile units (e.g., armored 

vehicles) and stationary units (e.g., gun cannons). In addition to gaming units, buildings (structures) 
also play an essential role. Buildings are used primarily to construct new defense units or other (more 

advanced) buildings. However, they can also perform particular functions, such as the production of 

the energy required for the operation of facilities, or they serve as fixed stationary points of defense 
(e.g., a wall). The group of all buildings in a limited space is, colloquially, called a base. The main 

building with which the game is started is often also named the base, and is of great importance 

because the player places other buildings around it. Loss of a base, however, can mean a big strategic 

loss, or even represent the end of the game. 
RTS games are highly complex, as the player has to master and control a large number of aspects, 

such as [16]:  

 Resource Management: An aspect focused on the collection/acquisition of virtual money or 

gaming raw materials such as wood, stone, etc., 

 Construction of new mobile gaming units and buildings: A player buys buildings with 

resources, which are often a necessary condition for the construction/purchase of mobile units, 

 Micro and macro-management of units: In micro-management, individual units are managed 

in a shorter time period and on a smaller map scale (low-level behavior of units and smaller battles 

between units or groups of units), and in macro-management for a more extended period 
(development and construction of (more advanced) units, strategies, resource management for the 

successful construction of units supporting the current strategy at play, etc.), 

 Tactical and strategic levels [17]: At the tactical level, the player develops a game plan for the 

range of thirty seconds, and at the strategic level, for around the span of three minutes into the 

future, 
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 Scouting: As the players don't always see the entire map, they must send one of the units to 

scout the map, 

 Map visibility: Commercial games often have the option of only partial map visibility [18], 

meaning that the players can only see that part of the map they have explored and which is 
currently occupied by their units. The rest of the map is hidden under a so-called fog-of-war. 

However, for RTS research purposes, the entire state of the map is often visible (i.e., without 

concealing information). 

 Economy: In scientific works, the individual aspects, such as resource management for the 

needs of the construction of mobile units and buildings, are often described under this term, 

 Diplomacy: This aspect is not often used in RTS games, but it can take the form of grouping 

players into alliances, the disintegration of these alliances, sharing resources and helping each 

other, or using unwritten rules with which all the players agree. 

 
Due to all these aspects, and with even more aspects possible (i.e., the list of aspects presented was 

non-exhaustive), it can be said that RTS game environments are one of the most complex game 

systems, due to the many moving parts which need to be synchronized to work in near real-time. 
Therefore, they are useful for scientific research and are excellent representatives of natural 

environments. 

2.3. Games as the real-time systems 

A system that can be said to operate in real-time must comply with the definition of the German 
industry Standard DIN 44300. The Standard states the following: "The operating mode of a computer 

system in which the programs for the processing of data arriving from the outside are permanently 

ready, so that their results will be available within predetermined periods of time; the arrival times of 

the data can be distributed randomly, or be already a priori determined depending on the different 
applications" [19]. 

Games are real-time systems (or environments [20]), as they update the user iteratively with new 

information and graphic representation of the active environment on screen [21]. How the graphic 
information is displayed in games is very similar to the graphical expressions in movie technology. A 

movie is a sequence of frames which are slightly different from each other, so that they become a 

moving image when perceived by the human (brain) when displayed at a high enough speed (e.g., 24 
Frames Per Second (FPS)). Games work similarly, but each game frame includes additional 

information such as the game state and the time slice available for taking actions (i.e., the time 

available before the actions will reflect in changes to the game state) between the game states 

transitions. Game engines are designed in a way as to always offer a time slice during the transition 
from one frame to another. During such transitions it is possible to obtain information about the game 

state (e.g., how many visible opponent units are on the map), as well as to influence this state via 

game engine methods (e.g., execution of actions for each friendly unit). 
 RTS games are often designed to operate at 24 [22] or 30 [23] FPSs, while, for other game genres, 

the number of FPS can reach 60 [24] or even more. So, when a game is running with 30 FPS, 

approximately 33 ms (1,000 ms / 30) of the time slice is available with each frame (note: The time 
slice can also be higher or lower, depending on the developer game engine settings), within which all 

chosen operations must be performed. If the game engine receives the actions (i.e., the operations that 

need to be executed) within the time slice, and the game engine is implemented correctly to guarantee 

all the action execution reliably (i.e., a hard real-time system which obeys the given time limits), then 
all the actions will be executed reliably during the transition from one frame to another. However, if 

we do not perform any operation (e.g., the calculations performed by the game agent exceed the time 

slice), the game engine won't wait, but will simply traverse to the next game frame. 
Games are, therefore, almost always real-time systems, as they follow the definition written at the 

beginning of this subchapter. This conclusion is based on the facts that the game engine processes 

received external data (e.g., from a user, or an algorithm specified actions) on an ongoing basis, the 

results are already reflected in the game state in the next frame, and the frames follow predetermined 
time intervals. Also, the game engine can process the arriving data in real-time (i.e., when it receives 
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them) anytime during the available time slice, or group all the data and processes them all at once at 

the determined time. Note that, in both cases, the time slice must expire fully to the end, otherwise, 
the game display might experience artifacts. 

3. Machine Learning and Game Agents 

This chapter explains the main branches of ML and the game agents which build upon the ML 

methods.  

3.1. Machine Learning 

ML is one of the branches of AI, which uses a variety of statistical, probabilistic, and optimization 

techniques, that allow the computer to learn from past experience (or examples), and allow the 

detection of difficult-to-observe patterns in large and complex data, which can also include noise [25]. 
It is also the most effective method used in data analytics when a prediction about something must be 

made by devising models and algorithms [26]. 

The field of ML is immense. The ML algorithms can be divided into three main categories: 
supervised, unsupervised, and reinforcement learning [27]. 

With supervised learning we provide examples of bot input data and the associated results [28]. 

With these, the machine can learn to predict future output based on new (unseen) inputs. For outputs 

classes are often used, but the output can also be represented as a numeric value. An example of 
supervised learning would be classifying e-mails into spam and not-spam classes.  

In unsupervised learning the outputs for the input data are not known in advance. There are two 

main cases in which unsupervised learning can be employed. In the first case, the algorithm learns to 
classify data into categories not defined explicitly in advance. From the previous example of e-mail 

classification, the algorithm must derive the spam/not-spam classes automatically. The second case is 

the automatic features extraction, which reduces the complexity of data representation. The algorithm 

must find a small number of data features of complex datasets that retain the original data's 
characteristics and essence [29]. 

Reinforcement Learning (RL) differs from supervised and unsupervised learning in that it does not 

require the dataset of the learning pairs. Its learning occurs based on a reward and a penalty while in 
direct contact with the environment (e.g., the game space). Actions are carried out iteratively within 

the environment, to accumulate and obtain the largest sum-total reward over a certain period [30]. 

The main tasks of machine learning can be summarized as follows: anomaly detection, association 
rule mining, clustering, binary and multiclass classification, forecasting, regression and object 

detection [31]. 

3.2. Game Agents 

Game Agents are designed to play the game independently (i.e., without intermediate human 
intervention), and by following the game rules for which they were created strictly. The game's rules 

can be hardcoded-in by the developer, or acquired completely automatically (general gameplaying) 

[32]. Game Agents can: Utilize different Machine Learning methods (game trees [33], Deep Learning 

[34], Swarm Intelligence algorithms [35], etc.); operate in environments with different access to 
information (e.g., a partially observable environment [36]); have a different internal structure (e.g., 

modular design of the gaming agent [37]); and so on. The primary goal that Game Agents pursue is to 

try to win the game, and the secondary goal is to play the game in the best possible way (e.g., to gain 
as many points in the game as possible) [38].  
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4. Case studies 

The authors of different game domain works utilizing ML are sometimes also relating to the (real-) 
time components (e.g., exploring timings regarding the behavior switches in the RTS game 

StarCraft™ [16]). With this work, the initial time analysis case studies are conducted, with which the 

first steps are made towards the path of a more general time-domain picture of the game field. The 
case studies aim is to acquire and analyze the time data when the ML-based Game Agents are 

involved in highly complex operations in the RTS game environment. The analysis of such data 

should show if the usage of ML algorithms is possible in almost real-time (i.e., while the game is in 
progress, and, therefore, the ML algorithms aren't allowed to pre-process the game information 

beforehand). Two case studies were designed. First, to capture the time data while the Game Agents 

act as playtesting agents. Game Agents were used to test the validity of the game features (a general 

term used to describe what characterizes an individual game [39]), which are part of the real-time 
game space. Second, capturing the time data while the Game Agent plays the game, and while the ML 

methods are used to create its opponent model [40]. 

  
Both case studies ran on the following equipment: 

 

 Hardware: Intel i7-9700 @ 3 GHz (turbo: 4.7 GHz) processor with eight cores, 32 GB RAM 

 Software: Operating system Windows 10 Pro with the software development tools IntelliJ 

IDEA 2020.2.1 (Community Edition) in Java (version 13.0.2). The micro RTS's [41] (seen lower 
in Figure 2) latest version of the game simulation environment acquired from the authors' GitHub 

repository was used for both case studies.  

4.1. Case study one 

For the game space to be valid the correct implementation of the game features must be ensured 
(i.e., the game features must perform according to the design specifications during the game space 

planning phase). Any deviation from the intended operation is a bug, and can affect the course of the 

game, or, in the worst case, even cause the failure of the game. Therefore, it is in the game developer's 

interest to have game features with as few as possible bugs present, and that the testing is made in the 
most efficient way possible. 

The solution to the problem is in the automation of validating the correctness of the game features 

by using customized game agents (ML-based) during the development of the game space. Four such 
game agents were utilized in case study one:   

 

 IDABCD: The Agent uses the classical alpha-beta (α-β) search technique, and was adapted 

specially for actions which are durative [42]. The acronym ABCD therefore stands for Alpha-Beta 

Considering Duration. The ABCD is a modified and improved version (memory and time wise) of 
the minimax real-time game algorithm.  

 UCT: It is the standard and most popular form of Monte-Carlo Tree Search (MCTS), where 

an Upper Confidence Bound is used for Trees [43]. The standard MCTS is otherwise a best-first 

search technique, and it is based on the stochastic simulations. 

 PuppetSearchMCTS: The Game Agent is designed using MCTS over a sequence of puppet 

moves (i.e. scripts with decision points exposed) and using α-β pruning [44]. The framework is 

thus based on a search technique, which examines a problem that may arise during an adversarial 

search (i.e. planning into the future). 

 NaiveMCTS: It is a standard form of the MCTS tree, but with the naïve sampling usage [41]. 

 

All the described agents are part of the existing microRTS package, and we used their default 

microRTS pre-set parameters (i.e., the parameters are set as the original authors decided them and 

weren't changed for the purpose of the experiment). Just to point out, it is worth mentioning that the 
PuppetSearchMCTS uses the default UnitTypeTable as input script, and the NaiveMCTS has 
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parameter values set to εl = 0,33, ε0 = 0,75 and max_depth = 1. The game agents had one hundred 

milliseconds time available for processing between frames, which is also the default value used in 
microRTS for experimentation purposes.  

 

Seven game features were created for case study one, representing features usually used in the 

RTS game spaces. The game features are as follows: 

  GF1: is for the purpose of making the game state evaluations. The evaluation result is 

calculated based on the current values of the game state (e.g., the number of combat units on the 

game map). It must be an accurate representation of the game state when the evaluation score is 

provided to the player. The microRTS map melee8x8Mixed6 was used, and the opponent was a 
RandomAI game agent (a basic agent executing random actions). 

 GF2: represents the game difficulty. With this game feature, the opponent has an unfair 

advantage in the form of x number of units, which is reflected in the fact that the opponent defeats 

the player in each game. The microRTS map basesWorkers8x8 was used, and the opponent played 
by RandomBiasedAI (a basic agent executing random actions but with bias towards harvest, attack 

and return actions) had the help of five heavy units. 

 GF3: deals with the intermediate goal of the game, which is the structure construction. 

Meaning that the game feature is designed to allow the players to build the structures (e.g., 

barracks) in the game. The microRTS map basesWorkers8x8 was used, and the opponent was 
PassiveAI (an agent which is not executing actions), to allow the game feature validating game 

agent to evolve without interruptions. 

 GF4: utilizes the game engine and game objects. The player unit (e.g., combat unit) always 

hits with x points of damage. The microRTS map melee4x4light2 was used, and the opponent was 
RandomAI. 

 GF5: belongs to the segment of in-game exploration (i.e., the player can unlock new 

technologies through the game technology tree usage). If the player chooses to explore the 

construction of specific units, they can build x player units (e.g., light combat units) using a 
specific building (e.g., through microRTS structure barracks). The microRTS map 

basesWorkers8x8 was used, and the opponent was RandomAI. 

 GF6: is operating in a partially observable environment. The game feature states that the 

player cannot operate in an environment presenting partial information, and destroying enemy 

units hiding in such an environment is impossible. The microRTS map basesWorkers12x12 was 
used, and the opponent was RandomBiasedAI. 

 GF7: represents the game challenge to the player. The player cannot destroy x buildings (e.g., 

barracks) that are guarded by y player units (e.g., a heavy combat unit) and are rushing the player, 

who has the z resource units available. The standard 8x8 microRTS game map was used, and the 
opponent, played by HeavyRush operating two barracks, was rushing the player with five heavy 

units. 

 

Every agent validated each game feature one hundred times (i.e., each agent played the game one 
hundred times during which the game feature was validated). The maximum time allowed for game 

feature validation was set to ten minutes (600 seconds) per game. During the validation the time 

measurements were made, which consisted of time intervals showing the fastest and slowest 
validation time per game (Table 1), the average time (Table 2), and the Standard Deviation (Table 3) 

for all the games. 

 

Table 1 
Time intervals in seconds during all game feature validations for all the Game Agents used. 

Game 
feature 

IDABCD UCT PuppetSearchUCT NaiveMCTS 

GF1 [33.201, 265.664] [12.477, 42.008] [10.067, 21.705] [12.151, 53.174] 
GF2 [7.491, 174.423] [10.567, 316.521] [3.829, 201.98] [21.931, 220.02] 
GF3 [40.084, 183.178] [21.055, 32.872] [53.231, 56.572] [21.307, 33.616] 
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GF4 [3.116, 86.894] [2.699, 14.088] [2.613, 17.444] [2.538, 12.88] 
GF5 [74.364, 242.159] [21.669, 50.087] [53.369, 111.86] [19.784, 52.265] 
GF6 [1.33, 3.97] [1.436, 1.672] [1.437, 1.743] [1.474, 1.812] 
GF7 [1.632, 6.709] [1.826, 41.075] [4.853, 5.223] [1.776, 7.059] 

 

Table 2 
Average time values in seconds during all game feature validations for all the Game Agents used. 

Game feature IDABCD UCT PuppetSearchUCT NaiveMCTS 

GF1 101.704 21.769 14.396 19.517 
GF2 32.280 127.676 30.147 67.516 
GF3 111.487 27.408 54.435 25.782 
GF4 25.8 6.608 6.752 5.915 
GF5 127.001 38.046 74.743 33.858 
GF6 1.565 1.528 1.567 1.617 
GF7 3.049 4.359 5.046 3.098 

 

Table 3 
Standard Deviation values in seconds during all game feature validations for all the Game Agents 
used. 

Game feature IDABCD UCT PuppetSearchUCT NaiveMCTS 

GF1 52.931 5.267 2.324 6.594 
GF2 20.194 65.636 29.183 33.361 
GF3 29.681 2.311 0.768 2.942 
GF4 17.778 2.168 2.457 2.161 
GF5 30.844 5.902 11.609 5.651 
GF6 0.53 0.05 0.054 0.062 
GF7 0.879 5.732 0.067 1.41 

 
For the time analysis of the agents the point of our focus is on the average execution times (Table 

2), which, in our opinion, present the most precise time data picture. The agent's time executions 

varied within the allowed upper execution time limit of 600 seconds due to the non-linear nature of 
ML algorithms, but it must be stated that all of them, nonetheless, had completed game feature 

validation successfully inside that given limit. The IDABCD agent utilizes the allocated time slices 

where possible, based on the collected time data. That is to be expected, given that IDABCD builds 
on a (highly improved) version of the minimax real-time game algorithm, which is designed to use all 

the resources available to it. The UCT and NaiveMCTS agents stick to low execution times. The 

PuppetSearchMCTS agent is also expectedly fast, due to the use of scripts, which are keepers of game 

domain knowledge, which allows an agent to arrive at a decision quickly. Overall, case study one 
confirms that the game agents utilizing ML algorithms can deliver valuable results in the given time 

limit, while also completing additional tasks (besides game-playing), such as validations. 

4.2. Case study two 

For case study two the time data were recorded while the UCTUnitAction agent (also part of the 
microRTS package) was also playing the game on the microRTS board (Figure 2), and its opponent 

model was created via incorporation of our ogpmARM method [45].  

The UCTUnitActions agent uses a standard UCT, but is based on unit-actions (i.e., only the 
actions of one specific unit are considered in UCT nodes) instead of player-actions (i.e., considering 

all the actions coming from a player/agent). Such optimization avoids the exponential number of 

actions to some degree. 
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The ogpmARM method utilizes Association Rule Mining (ARM), a valuable ML method for 

finding relationships between attributes in a transaction database [46]. In our case, a variation of 
ARM called Numerical ARM (NARM) was used, which can work with categorical and numerical 

attributes. The NARM algorithms are based on stochastic population-based nature-inspired 

algorithms. The nature-inspired Differential Evolution algorithm [47] was applied for case study two. 

 

 
 

Figure 2: Game agent UCTUnitAction (represented with red units) during gameplay in the 

microRTS game environment 
 

The method consists of five steps. The relevant game state features, confidence value and 

maximum time passed are defined in step one. Step two is used for saving the feature values in the 

record set (a set of feature values of the current game state). Step three executes the NARM on the 
record set and extracts the most relevant actions from the NARM rules. The record set keeps all the 

feature values of the previous frames (i.e., the record set is not cleared after each frame). That way, 

the opponent modeling can take advantage of the full game information (from the first to the last 
frame of the game), and it is a good ML time analysis stress test, with constant expansion of the data 

that the NARM (and its DE algorithm) have to process. Step four selects the policies (from the pool of 

pre-defined game policies) where the extracted actions are present, and forms a pattern. Step five uses 

the pattern for strategic and tactical decisions against the opponent. 
For the case study two experiment the UCTUnitAction agents played the full microRTS game ten 

times on the standard 8x8 game map seen in Figure 2 against a RandomAI. Step three of an 

ogpmARM method was executed in each round and for each game frame.  
 The graph shown in Figure 3 shows the time data for all the ten games played. The game frame 

numbers are seen on the graph's abscissa axis, while, on the ordinate axis, the time is presented in 

milliseconds. From the beginning frame to around the 250
th
 frame, all the games progress uniformly, 

and are all reaching the 5,000-millisecond mark. When progressing up to the 500
th
 frame, the 

gameplay differences show as variations of the measured time during each game. After the 500
th

 

frame, the time range of game five comes close to the 30 seconds mark, while game ten is still below 

the 25 seconds mark (even though the tenth game was longer based on the full frame count). 
As the time analysis graph shows the functions of specific games are not linear, yet they are still 

predictable (i.e., a pattern is showing up to the some degree). For example, it could be said that, up to 

the 250
th

 frame, the time functions are almost the same, while, up to the 500
th
 frame even if they are 

not the same, they are still very close together (i.e., only slight variations between them). So, to the 

specific frame point, real-time data processing is possible, because the time intervals are predictable, 

meaning that a real-time data limit could be set, until which the operation is (certainly) completed. 
Therefore, at least soft real-time limits are possible in complex environments such as RTS games 

while utilizing advanced ML algorithms. 
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Figure 3: Time analysis of a UCTUnitAction agent during opponent modeling 

 

5.   Conclusions 

In this article the time analysis was performed by utilizing different ML methods and algorithms 

used in complex RTS game environments. Two case studies were made for that purpose. Case study 

one dealt with the validation purposes of the real-time game space, and case study two was designed 
for gathering time data during opponent modeling of Game Agents with the help of the ML method. 

Both case studies gave valuable information regarding current ML usage possibilities while they are 

being utilized in such complex real-time cases. The data show that, if the time frames are set 

realistically (i.e., considering the problem at hand), the ML delivers the results during that time frame, 
or comes very close to it (i.e., slight variations are possible due to the non-deterministic nature of ML 

algorithms). Case study one, therefore, showed that a ten-minute mark was enough to make one pass 

of the game while validating a game feature. Case study two showed that the time predictions could 
be set in-line (i.e., scaled up) with the size of the problem, which is, in our case, the number of 

additional features that each frame adds. To put that into perspective, as Figure 3 shows, the time 

predictions are uniform to the 250
th

 frame (the five-second) mark, which makes ML usage suitable for 
in-game use. For example, in RTS games, the five-second processing interval would place it for 

possible in-game usage between reactive control of units (i.e., low-level controlling of units) and 

tactics usage (e.g., operating a group of units when in interaction with other (non-friendly) groups of 

units) [16]. But after that mark variations in time functions can occur, due to the complexities of the 
game environment and due to the non-determinism of ML methods, but even then, the time limits 

needed for ML processing are predictable for many more frames ahead. Therefore, if such variations 

are anticipated and soft real-time is allowed (i.e., the results are still valuable, even if they were 
acquired slightly over the limit), the utilization of ML in complex scenarios is certainly possible.  

In the future, we envision that even more ML usage will occur in all software process segments, 

either while the software is being developed or is in production use. So, our future plan involves 

additional experiments delving deeper into the time components, such as the variations seen in the 
case two study. 
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