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ABSTRACT
Abstract: This pioneering study tries to break the wall of the ques-
tion, how to develop algorithms capable of self-improving. The
foundation of this work is the extended model of the human mind,
while the information flow between components is inspired by
molecular genetics. As a result, the proposed evolving algorithms
consist of complex rules and stochastic processing, while the pre-
liminary results also revealed enormous potential for the future.
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1 INTRODUCTION
Human intelligence is not an innate characteristic of the brain as
proposed by classical symbolic Artificial Intelligence (AI) [Hiesinger
2021]. Indeed, intelligence is shown in the interaction of human
with their environment.The main critic of the classical symbolic
AI Brooks [1986] asserted that the premises, on which this AI was
founded were false and therefore alternative approaches needed to
be searched for.

The Evolutionary Algorithms (AEs) [Eiben and Smith 2015b] that
has emerged a decade later also did not meet all the demands of the
AI domains. On the one hand, an estimation of individuals is limited
to the current generation and not to the quality of those during a
long-term run, while on the other, the behavior of the individual is
not evaluated directly in an environment [Eiben and Smith 2015a].
Last but not least, each algorithm running on a digital computer is
rigid in the sense that it does not allow any evolvability [Roitblat
2020].

Nowadays, some programming languages offer an innovative
approach to repairing the program code during the running of the
code itself. The process is called hot code reloading or hot code
swapping [Appavoo et al. 2003]. In practice, this means that we
change a part of a module with new or replaced/updated code, and
the code is then immediately reloaded. Interestingly, only a small
number of programming languages support hot code swapping

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528780

natively, as for example: Lisp, Smalltalk, Erlang, and Elixir. Some of
the other languages do not support this feature natively, but offer
specific libraries capable of ensuring this functionality.

In order to accommodate evolving algorithms enabling self-
improvement, we searched for an appropriate computational model.
A standard cognitive model of the fixed structure of the mind (also
called cognitive architecture) has been proposed by Laird et al.
[2017], and slightly extended version of this was chosen to serve
as our computational model. According to our extended model
(Fig. 1, cognitive architecture consist of Short-Term Memory (STM),
and procedural, declarative, and goal-oriented Long-Term Memory
(LTM). Thus, the procedural LTM refers to the production model
consisting of numerous IF. . .THEN rules, the declarative LTM to
connectionist model (also called Neural Network (NN)), while the
goal-oriented to a sequence of actions that is the result of planning.
The STM serves as the working memory devoted for perceiving
senses from environment, and for launching the appropriate mental
motor activities leading to actions, with which human change their
environment. Obviously, the appropriate actions are selected on

Figure 1: Extended model of the mind.

basis of decision-making process in which both types of LTMs are
included. When the result of decision-making is a plan describing
how to achieved the specific goal, the plan persists in the goal-
oriented LTM until this is achieved or it is unreachable.

The purpose of the present study is to outline an architecture of
the evolving stochastic algorithms based on the extended model of
the mind. Obviously, the cognitive model is only one side of the coin.
The another side of this presents the answer to the question how
information flow among the mentioned components of the model.
We found the answer on the foundations of the molecular genetics.
The results of synthesis both domains lead us to the concept of an
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evolving algorithms enabling self-improvement. In this preliminary
work, the concept was applied for global optimization, while the
results showed its potential for future development.

2 RESEARCH METHODS
Special-purposed algorithms performed well when applied to well-
structured known problems [Roitblat 2020]. For instance, EAs present
strong tools for optimization over a known search space. Unfor-
tunately, they suffer from an inability to invent something from a
new perspective, as for example: to design unforeseen structures,
to formulate new scientific paradigms, or to create new represen-
tations [Roitblat 2020]. In general, the algorithms are deficient in
self-improvement.

We have searched an inspiration for self-improvement algo-
rithms in operations of human brain that enable mind. The brain
consists of a huge number of nerve cells called neurons and en-
ables the mind to function. Neurons are electrical excitable cells
that communicate among each other using specialized connections
called synapses. On the molecular level, the hereditary information
for all living beings is made of DeoxyriboNucleic Acid (DNA) [Al-
berts et al. 2002]. The molecule is placed inside the nucleus, and
share information about how to react in certain situation. The DNA
information are transferred outside the nucleus into the cell by
messenger RiboNucleic Acid (RNA), and influence the process of
synthesizing the proteins that perform most jobs in the cells.

In general, there are two processes supporting transmission
of information from the nucleus to the cells: transcription and
translation. Transcription involves copying a segment of DNA
into a messenger RNA. Translation, on the other hand, ensures
that the encoded information for synthesizing the proteins is de-
coded using the universal genetic code. Actually, information in
molecular genetics passes from genes to proteins in the following
form, baeck1996evolutionary:

DNA → RNA → Protein.

As each human call, neurons also contain the nucleus with the
same heredity information written in DNA. In neuron cells, there
is not a plan for how to connect neurons to each other. Actually,
algorithmic information for developing brain is contained in genes
(regions of DNA). This means that neuron’s connections can be
reconfigured under the new algorithmic information from DNA.
In this sense, genes allow growth and guide self-assembling, thus
enabling brain to evolve [Hiesinger 2021].

The concept of self-assembling brain can be used also by de-
velopment of evolving algorithms. Indeed, the concept of those
algorithms can be gathered in the following information flow:

Complex rules → Encoding → Stochastic processing,

where ’Complex rules’ refer to decision-making (inspired by DNA),
’Encoding’ to the encoded sequence of algorithmic information
(inspired by RNA) for evolving the ’Stochastic processing’ goal-
oriented component (inspired by Protein). Here too, processes of
transcription and translation ensure that the clues from the decision-
making component are appropriately encoded in messages, which
are then decoded into an evolving goal-oriented component (i.e.,
stochastic algorithm). This information flow directly complies with
extended model of mind illustrated in Fig. 1.

In more general form, the evolving algorithms are defined as:
Evolving algorithm=Complex rules+Stochastic processing

A scheme of the evolving algorithms is illustrated in Fig. 2, from
which it can be seen that. just as a DNA influences the connecting

Figure 2: Scheme of the evolving algorithm.

of the synapses of neurons according to the new algorithmic infor-
mation, so a stochastic algorithm also improves itself according to
the new information obtained from the Complex rules.

Obviously, the stochastic processing goal-oriented component
can be implemented using different stochastic methods, e.g., EAs,
when IF. . .THEN rules are closer to the problem solving by the
procedural LTM, or Self-Organizing Map (SOM) networks, when
the problem is more suitable for solving by the declarative LTM sub-
system. The decision-making component can also be implemented
by various mathods, e.g., the First-Order Logic (FOL) rules, when a
symbolic logic is applied, or Reinforcement Learning (RL), when
long-term rewarding for solution quality is preferred.

3 TOWARDS STOCHASTIC EVOLVING
ALGORITHM

In this preliminary study, the concept of the proposed evolving algo-
rithms was applied to the global optimization problem, where three
benchmarks issued for the CEC Competition on Real-Parameter Op-
timization in the last decade were observed (i.e., CEC’13, CEC’14,
and CEC’17). Consequently, three of the favourites expected to
achieve excellent results for some of the benchmarks are taken
into consideration here (i.e., Shade using linear population size
reduction (lShade) [Tanabe and Fukunaga 2014], Improved lShade
(iL-Shade) [Brest et al. 2016], and Single Objective Real-Parameter
Optimization (jSO) [Brest et al. 2017]). The goal of our study was
to find such an evolving algorithm that would be able to achieve
the best results across all three benchmarks.

In summary, there a set of three algorithms 𝑝𝑟𝑜𝑐𝐿𝑇𝑀 each with
its own strategy for exploring the search space, which can be de-
scribed formally as:

𝑝𝑟𝑜𝑐𝐿𝑇𝑀 = {lShade,iL-Shade,jSO}.
Each of the strategies is hard-coded into a particular executable

program and stored into procedural LTM. Because all of the pro-
grams implement adaptive algorithms searching for the best pa-
rameter setting is not necessary.

In terms of evolving algorithms, each of the strategies represent
goal-oriented component (i.e., programs) that need to be loaded
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into the working STM using the hot code swapping technique.
As a decision-making component, the RL technique is applied that
selects the stochastic DE program according to the decoding scheme
illustrated in Table 1. As can be seen from the table, the coding

Table 1: Evolving algorithm’s coding scheme.

Code Strategy
A lShade
B iL-Shade
C jSO
P PARA 𝑛

scheme makes possible the encoding of the particular strategies
(code A-C) and adaption of the stochastic algorithm (code P).

In the proposed evolving algorithm named RLDE, two optimiza-
tion processes are simultaneously launched:

• A control process representing decision-making by the prob-
lem solving at higher level (Algorithm 1),

• An optimization process implementing the goal-oriented
Shade algorithm at lower level (Algorithm 2).

Both algorithms interact with each other by posting and receiving
messages. As can be seen from Algorithm 1, the complex rules
component is a simple implementation of RL that rewards the better
strategies on the basis of a 𝑄-value function [Sutton and Barto
2018]. The task of the component is to determine action with 𝜖-
greedy selection, and to encode it into a variable 𝑠𝑡𝑟𝑒𝑎𝑚, with which
it affects the evolving stochastic component. After completion

Algorithm 1 Pseudo-code of the decision-making component.

1: procedure complex_rules(𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝐷, 𝑆)
2: Init(∀𝑠 ∈ 𝑆+ ∧ 𝑎 ∈ 𝐴(𝑠) : 𝑄 (𝑠, 𝑎) = 0; 𝑁 (𝑎) = 0);
3: do
4: 𝑎 = 𝜖-greedy(𝑄 (𝑆,𝐴));
5: 𝑠𝑡𝑟𝑒𝑎𝑚 = Encode(𝑎);
6: Post(𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝐷, 𝑠𝑡𝑟𝑒𝑎𝑚);
7: Receive(𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝐷, 𝑅, 𝑆 ′);
8: 𝑄 (𝑆,𝐴) = 𝑄 (𝑆,𝐴) + 𝛼 (𝑅 +𝛾 ·max𝑎 𝑄 (𝑆 ′, 𝑎) −𝑄 (𝑆,𝐴))
9: 𝑆 = 𝑆 ′

10: while 𝑡𝑟𝑢𝑒
11: end procedure

of stochastic processing, the learned action-value function 𝑄 is
updated. We should notice that the state 𝑆 actually addresses the
current DE population.

The main part of Algorithm 2 is creating the context for the
problem solving. This consists of a description of the benchmark
functions (i.e., 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) and internal data structures needed for
operation of the Shade algorithms. The algorithm contains two
for statements: The outer one controls the termination condition
expressed as the maximum number of generations, while the inner
one directs the modification of each particular individual in partic-
ular generations. The task of the stochastic algorithm is to manage
the population of individuals from the population 𝑆 according to
clues received by the encoded 𝑠𝑡𝑟𝑒𝑎𝑚 (’Decode’ function). If chang-
ing the strategy is demanded, the new program is loaded from the
procedural LTM (’Load’ function). Using hot code swapping, the

function ’Load’ ensures that only one copy of the program is located
in the working STM. Then, the program is adapted according to
the ’PARA 𝑛’ clues in the ’Evolve’ function, where the parameter 𝑛
either includes or excludes some term in the DE mutation strategy.
As a result, the basic program loaded from the procedural LTM can
be evolved during the evolution cycle. Let us notice, the function
’Execute’ implements the adaptation of the DE mutation strategy,
the fitness function evaluation, and the DE one-to-one selection
operator. The result of the function is double: the reward and the
new state 𝑠 ′.

Algorithm 2 Pseudo-code of the goal-oriented component.

1: procedure RLDE(𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝐷, 𝑝𝑟𝑜𝑏𝑙𝑒𝑚)
2: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = CreateContext(𝑝𝑟𝑜𝑏𝑙𝑒𝑚);
3: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷=Create(𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝐷, 𝑝𝑟𝑜𝑏𝑙𝑒𝑚);
4: 𝑐𝑢𝑟_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑁𝑈𝐿𝐿;
5: for all 𝑡 ∈ 𝑇 do
6: for all 𝑠 ∈ 𝑆 do
7: Receive(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷, 𝑠𝑡𝑟𝑒𝑎𝑚);
8: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = Decode(𝑠𝑡𝑟𝑒𝑎𝑚);
9: if 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ≠ 𝑐𝑢𝑟_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 then
10: 𝑝𝑟𝑜𝑔 = Load(𝐿𝑇𝑀, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦);
11: 𝑝𝑎𝑟𝑎𝑚 = Evolve(𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑠𝑡𝑟𝑒𝑎𝑚);
12: 𝑐𝑢𝑟_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦;
13: end if
14: ⟨𝑟, 𝑠 ′⟩ = Execute(𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑝𝑎𝑟𝑎𝑚, 𝑠);
15: Post(𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝐷, 𝑟, 𝑠 ′);
16: end for
17: end for
18: PrintSolution(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 );
19: Delete(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷);
20: DeleteContext(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 );
21: end procedure

4 EXPERIMENTS AND RESULTS
The following hypothesis guided our experimental work: ”The
evolving algorithm for global optimization is able to achieve the
best results by solving all three benchmarks issued for CEC Special
Session/Competition on Real-Parameter Optimization during the
last decade.”. In line with this, three RLDE versions were devel-
oped that were distinguished from each other by the initialization
context, i.e., the RLDE-0 initialization adaptation scheme from the
lShade, the RLDE-1 from the iL-Shade, and the RLDE-2 from the jSO
algorithms. Detailed information about the initialization schemes
is beyond the scope of this paper.

To prove the posited hypothesis, the results of the aforemen-
tioned versions of the RLDE algorithm were compared with the fol-
lowing original, self-adaptive, and Shade-based algorithms: original
DE [Storn and Price 1997], Self-adaptive DE [Qin and Suganthan
2005], self-adaptive jDE [Brest et al. 2006], original Shade [Tan-
abe and Fukunaga 2013], Shade using linear population size re-
duction (lShade) [Tanabe and Fukunaga 2014], improved lShade
(iL-Shade) [Brest et al. 2016], Single Objective real-parameter op-
timization (jSO) [Brest et al. 2017], and lShade with Real-based
Selection Pressure (lShade-RSP) [Stanovov et al. 2018]. In summary,
there are eleven DE variants in the study.
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Characteristics of the benchmarks are presented in Table 1,
where 𝑁 denotes the number of the functions in benchmark suite.
Let us mention that only functions of dimensions 𝐷 = 10 were

Table 2: Characteristics of the CEC benchmark suites.

Type CEC’13 CEC’14 CEC’17
Unimodal 5 3 3
Multi-modal 15 13 7
Composition 8 8 10
Hybrid n/a 6 10
𝑁 28 39 30

taken into consideration. The quality of the results was estimated
by means of Friedman’s non-parametric tests, where the results
achieved according to the minimum, maximum, average, median
and standard deviation values obtained by optimization of each
of the 𝑁 functions were assembled into classifiers of size 𝑁 × 5.
However, the average results are obtained after 51 independent
runs. The results of the Friedman’s tests are ranks denoting the
strength of a given algorithm compared to the others. In our study,
the higher the rank, the better the algorithm.

The results of the comparative study obtained by optimizing all
three benchmarks containing the functions of dimension 𝐷 = 10
are illustrated in Fig. 3 as a box-plot diagram. As can be seen

Figure 3: Results of Friedman’s tests for 𝐷 = 10.

from the figure, the RLDE-2 using the jSO initialization scheme
outperforms the results of the other algorithms for all benchmarks.
Thus, the hypothesis set at the beginning of the section is validated.

5 CONCLUSION
The aim of this preliminary study was to introduce the concept
of evolving algorithms that could be capable of self-improving.
The concept is founded on an extended model of the human mind
taken from cognitive psychology. It consists of two components,
i.e., complex rules and stochastic processing. Both components
are connected via decoded messages similar to the information
processing in molecular genetics. In the sense of the cognitive
model, the first component refers to the decision-making processing
of the human mind, while the second is purely goal-oriented.

In our illustrative example, we proposed an evolving algorithm
for global optimization, where the decision-making component
is implemented using the RL that choices between three variants

of lShade algorithms using 𝜖-greedy selection. The results of the
proposed RLDE variants were promising when compared with the
results of the other eight DE algorithms.

Future research could be extended to address the feature selec-
tion problem, where the search space is also capable of exploring
three strategies: wrapper, filter, and embedded. However, even more
promising is the possibility of applying the evolving algorithm to
problems that are closer to being solved with the declarative LTM
subsystem of the human mind, like SOM, LSTM, and so forth.
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