

Adaptive Online Opponent Game Policy Modeling

with Association Rule Mining

Damijan Novak

Faculty of Electrical Engineering and Computer Science

University of Maribor

Maribor, Slovenia

damijan.novak@um.si

Iztok Fister Jr.

Faculty of Electrical Engineering and Computer Science

University of Maribor

Maribor, Slovenia

iztok.fister1@um.si

Abstract—Opponent modeling is a research aspect that needs

close attention when facing an opponent in a complex game

environment. Real-Time Strategy (RTS) games are a

representative of one of the highest complex game environments.

In RTS games, the players` tactical and strategical decisions need

constant adaptation in order to win the game. In this work, a

preliminary study is reported on opponent modeling in RTS

games via the incorporation of association rule mining to identify

game policies in online mode. Such insight into opponents’ mode

of operation should provide a player with vital information

regarding choosing advantageous gameplay countermeasures

against an opponent.

Keywords—Association Rule Mining, Artificial Intelligence in

games, Numerical Association Rule Mining, opponent policy

modeling, Real-Time Strategy games, uARMSolver

I. INTRODUCTION

Digital games are a great form of entertainment for many
players. Due to the variety of games, different categorizations
are used to group them accordingly. They can be categorized by
genres (genres such as Massive Multiplayer Online games [1],
2D platform games [2], or survival-based games [3]),
development models (e.g. indie games [4]), domains (e.g.
serious games in education and training [5]), computational
complexities (e.g. Multi-player Online Battle Arena [6] with
enormous state-action space), to name the few. One of the game
genre games at the top of the list of computational complexity
[7] is Real-Time Strategy (RTS) games.

RTS games are a genre of video games where players have
to master gameplay aspects such as production and resource
management (game-specific units and structures can be made
with careful utilization of resources), gameplay decisions
(ranging from high strategical command across tactical
decisions all the way to the low-level unit behavior), scouting
(of opponent units), and sometimes even diplomacy, to gain an
edge advantage in the game, which would result in victory for
the player. So, for the player to be able to defeat the opponent,
constant overwatch must be made regarding what the opponent
is doing (opponent modeling [8]), with adjustments to their own
gameplay made accordingly.

The main research idea regarding opponent modeling is to
use the Machine Learning (ML) approach, more specifically
Association Rule Mining (ARM), to perform a search for rules

on the RTS data gathered during the online gameplay (i.e. while
the game is being played). The action part of the rules is then
matched to the pattern, where the patterns are represented with
predefined game policies. By achieving a successful pattern
match, a conclusion can be made regarding which game policy
is used by the opponent, and proper adjustments and
countermeasures can be executed.

The paper is structured as follows. In the second section the
main definitions for the game blocks needed in the method are
identified in the related works. Section three discusses RTS
game subdomains important to the research regarding opponent
modeling. Section four presents Numerical Association Rule
Mining (NARM). The motivation, design and limitations of the
opponent game policy modeling method are provided in section
five. The method is proposed in section six. In section seven the
method design is tested with the experiment and the results are
provided. Section eight provides the discussion. The article
concludes in section nine.

II. GAME BLOCKS IDENTIFIED IN RELATED WORKS

In this section the main game blocks are presented which are
required in the concept of method, and which were identified
through the related works. Specifically, the focus is on the rule
mining, pattern, feature and replays inside the game domain.

In Leopold et al. [9] it was noted that rule mining typically
generates a considerable number of rules, from which only rules
meeting a certain support threshold are kept. Therefore, the need
was identified for the threshold to be included into this research.

In Li et al. [10] a loose definition of a pattern was provided
in this quote: “There are no fixed rules of what constitutes a
“pattern” in gameplay, and thus any dimension (e.g., time,
position, events) or a combination of multiple dimensions can
contain the factor(s) that define(s) a pattern behaviors.”. They
also wrote that existing data-driven game analysis methods
depend on data experts to construct a representative feature
space with external knowledge manually.

In Bosc et al. [11] they represented a pattern as a frequent
series of game actions done by the two players extracted from a
large database of replay games. They also defined replay as a
match record that contains all actions generated by the players.

CINTI 2021 • IEEE 21st International Symposium on Computational Intelligence and Informatics • November 18-20, 2021 • Budapest, Hungary

978-1-6654-2684-8/21/$31.00 ©2021 IEEE 000259

III. REAL-TIME STRATEGY GAME SUBDOMAINS

A short theoretical background of RTS game subdomains
relevant to this work is provided in this section. First, a short
description is given of some of the key aspects regarding the
RTS games, especially how they differentiate from the classical
board games upon which they are based. In this segment the
microRTS [12] is also described, which is a simulation
environment designed for rapid testing of new research ideas.
The environment will be used in the experiment to gather data
on the RTS features. Next, descriptions are provided regarding
features and their connection to the rules. Rules are basic
components upon which the opponent modeling is based, and
for which the description is also given. The section concludes
with game policy explanations.

A. Key aspects of a Real-Time Strategy games and microRTS

simulation environment

RTS games somewhat share the principle of their turn-based
board game cousins regarding the action execution, but the
actual implementation differs in a few important key points. In
the turn-based board games (e.g. chess) actions upon the game
environment (e.g. the chess board) are executed in turns (e.g.
after the first player made a move/action the second player has
time to make his/her move). This is the same for the RTS games,
but with the important difference of a real-time component. The
actions can be executed upon every new game state, which, in
RTS games, usually happens 24 [13] or 30 [14] times per second
(ca. 30 milliseconds between a change of game states).
Therefore, the game is played out in real-time, where, for the
human player, (who observes the game on a second-time scale),
it looks like the actions and their results showing in the
environment are instant (seamless progression of the game).

The second important difference is that both players can
execute their actions on every game state (simultaneous moves),
as opposed to the turn-based board games, where the first player
executes a move on the game board, followed by the move of
the second player upon the new/updated game board.

The third difference is that there is not only one action made
per player and per game state, but each player can execute
multiple actions per every game state. In fact, the player can
execute an action for every unit (called unit-action) in his/her
possession present in the game environment. A combined group
of all the unit-actions is presented in the form of player-actions
[15].

The microRTS supports all the above-mentioned key
aspects, as well as some others, such as: Durative actions (i.e.
they are not instant, so they can last over multiple game states),
various sizes of game maps, support for multiple players,
options to make the game environment partially observable and
non-deterministic, etc. It supports production of units and
structures, resource gathering, and the support for battle game
mechanics. Its simplicity comes on account of the small number
of supported units (one type of resource gathering unit called a
worker, which can also attack, and three purely battle oriented
units: Light, heavy, ranged) and structures (two structures,
named base and barracks), unit move capabilities (up, down,
left, and right), the small number of unit parameter types, 2D
only environment, and the like. However, although the

microRTS environment is kept simple, the full RTS complexity
is retained.

B. Features and rules

Some of the commonly found features in RTS games are unit
type, health and terrain/map [16]. In a typical RTS game the
number of features can surpass hundreds [17]. Basic features
(e.g. microRTS’s unit types [18]) are usually accessed directly
through the methods found in the game engine, like those
connected to the game state. The game state can also hold
extended feature information, like which durative actions units
on the game map are currently executing.

Commercial games usually address specific RTS game
aspects (e.g. tactical battlefield-arrangements) with the help of
basic feature information extraction from the game engine [19].
Extraction can be made by hand, and stored in the form of a rule,
where the rule is defined as the regular continuous aspect of the
game [20], with different recombinations of rules forming a
(dynamic) script [21] or pattern [22]. Such constructs can then
be used to create opponents [23], as well as to model opponents
[24].

C. Opponent modeling

Playing the RTS game is more than just following a strategy
agenda set in a straight line. One must also be cautious about the
surrounding environment, especially of every action performed
by the opponent, so that corrections can be made of the tactics
and alterations in the general strategy. Anticipating what the
opponent will or can do through opponent modeling is,
therefore, a requirement for a good game performance [25].

If an assumption is made that an RTS game agent
implements strategic and tactical command [26] and can
recognize opponents’ intentions [27], synergy of these two
agents` mechanics should result in a better performance.
Meaning, an agent can change tactics on the fly, and the
strategies can be changed [28] or enhanced (e.g. enhancing
scripted behavior through a look-ahead search [29]).

Since the RTS games are the most complex game genre
environments [7], the possibility of finding all the possible
strategies at a given time is intractable. But, given that RTS
games are Markov games [30], it is often possible to learn a set
of policies that encapsulate the diversity of possible strategies
[31]. To investigate players and to create such policies, replay
logs of the already played games (e.g. games of professional
players) may be a beneficial method [32].

D. Game policy

Designing a general game policy for the RTS games is not
an easy task, due to the multiple simultaneous aspects of the
game that must be considered. Aspects such as resource
gathering, battles, production of new structures and buildings,
or research tree extensions. Therefore, to be able to cope with
the problem of managing all those aspects, the researchers have
to divide the problem into subproblems, based on the planning
timescale (strategy, tactics and reactive control), and by the
subproblem`s function (production and resource management,
opponent modeling, scouting operations, and others) [33].

Static game policies that are predefined (scripted) in the
game agents are obviously not as good a choice as the dynamic

D. Novak and I. Fister Jr.• Adaptive Online Opponent Game Policy Modeling with Association Rule Mining

000260

ones. However, their advantage is speed, because they are
vulnerable against search-based methods [34]. The game agents
therefore depend on a good design of game policy, which will
be robust enough to help deal with seemingly similar game
situations, unpredictable, so that the opponent will have a hard
time figuring out its plans, fast and dynamic in a sense of
offering variability of operations in the same game scenarios.
Game policy can also be dependent on the state-evaluation and
state-forwarding functions [35] (the usage of different kinds of
models, e.g. combat models [36]).

IV. NUMERICAL ASSOCIATION RULE MINING

ARM stands for an important ML method whose task is to
find relationships between attributes in a transaction database
[37]. These relationships are presented as implications, where
the left side of the mined rule represents an antecedent and the
right side the consequent. The roots of ARM go back to the early
90s, when the first algorithm named Apriori was proposed.

NARM is considered as a variation of ARM [38][39]. The
main difference between NARM and ARM lies in handling
numerical attributes, where, in NARM, numerical attributes are
handled without discretization. It means that NARM algorithms
operate directly with both categorical, as well as numerical,
attributes. Typically, discretization introduces certain problems
which result in the loss of information and noise entering into
data. Thus, NARM algorithms which do not need discretized
data as an input provide more exact mined rules. Nowadays,
most of the NARM algorithms are based on stochastic
population-based nature-inspired algorithms due to their ability
for searching the very big search space.

 uARMSolver (universal ARM Solver) is a novel software
tool for tackling the NARM [40]. Software is written fully in
C++ and runs on all platforms. uARMSolver covers all stages of
the ARM process, from data preprocessing, rule mining and
visualization of results. Many NARM algorithms are included
in this tool, e.g. algorithms based on Differential Evolution or
Firefly algorithms.

V. MOTIVATION, DESIGN AND LIMITATIONS OF THE

PROPOSED OPPONENT GAME POLICY MODELING METHOD

The main idea is to record every action that the opponent has
done in the game environment, along with all the relevant game
feature information during the game playout. This information
is saved, because the past holds important clues which can reveal
the gameplay patterns of the opponent. By recording the
opponent, mining for rules in such a recording and creating a
pattern upon the rules, which results in finding the most probable
game policy, can provide an advantage in the game. For
example, if, at the beginning of the game, the game agent`s
game policy selects advanced production, which provides an
advantage in the middle game, but the opponent plans an early
rush tactic which would destroy the game agent`s base before
the game really even starts, and a discovery of the planned
opponents rushing game policy is made, the game agent can
immediately execute countermeasures (e.g. switching the tactics
to building an early defense).

The design is also driven by the choice to have a method
capable of providing results without the need for the forward

model, i.e. no simulations into the possible future game states.
Every result is, therefore, derived from the history of past states
(replay of the opponent’s gameplay actions). Such method could
prove its worth where there is no access to the future model (e.g.
the game engine/environment doesn’t support such calls, or
there is no viable solution to simulate future states), or where the
game agent must only operate at runtime / online mode (no pre-
processing available).

The method is also implemented to be time adjustable, to
enable the possibility of discovering what patterns the opponent
is using in a chosen time frame. A time frame component is
important, because by setting it to the nearby time (i.e. the last
half minute of game time), patterns regarding recent tactics can
be discovered, and by setting a longer period (e.g. the whole
game from the beginning to the current game frame),
extrapolation of tactics (or even strategies) that are being used
over a longer period of time are possible.

There are some limitations or shortcomings regarding this
chosen design. The first obvious one is that, if the opponent
changes his/her patterns of gameplay during the game, this will
only be sensed in the next state (or the next few states) when
new information is processed and new patterns are discovered.
No future predictions are made at this point.

A current shortcoming is that automatic RTS feature
identification and extraction are not implemented yet. The first
feature identification is made by hand, but possible
improvements are planned for future research articles (e.g.
feature extraction as the preprocessing step [41]).

VI. CONCEPT OF METHOD

The method for opponent game policy modeling with ARM
(ogpmARM) (Fig. 1) is proposed and described in the following
steps:

1. Define:

• The relevant game features that are recorded
from the game state during the gameplay.

• The confidence value threshold θcv above
which the rules provided by uARMSolver will
be kept.

• The maximum passed time for which the rules
are kept. It can also be expressed in the form
of the value of passed game state iterations.

2. Whenever the opponent executes the player-action, the
values for chosen features from the game state are
recorded, along with the action-type (e.g. move, attack,
produce, and other actions). One line of the data record
is created for each unit-action found in the player-action
set. The record is only made during a set time interval.
Previous saved records are deleted. The closed time
interval during which the records are kept is [a - mpt, a],
where a is the result of a function call
time(current_frame_num), and mpt is the maximum
passed time for which the rules are kept. If the start of
the interval is under 0, or if the mpt is set to -1, the
interval starts with the first game frame (beginning of
the game).

CINTI 2021 • IEEE 21st International Symposium on Computational Intelligence and Informatics • November 18-20, 2021 • Budapest, Hungary

000261

Fig. 1. Method for opponent game policy modeling with ARM (ogpmARM).

3. The ARM is executed upon the gathered data set and the
rules above the θcv are selected. The action-types are
then extracted from the rules. That action-type
represents the action which has the highest confidence
for being the main action type that the opponent is using.

4. The policies where the extracted action type is present
are selected from the pre-defined set of game policies.
The set of chosen game policies forms a pattern.

5. Use the pattern for strategic and tactical decisions
against the opponent.

VII. EXPERIMENT AND RESULTS

The microRTS [42] game simulation environment (used in
IntelliJ IDEA 2020.3 tools with OpenJDK 11.0.5) was utilized
for the purpose of data gathering.

The following relevant game state features are defined for
which the values will be recorded: Number of friendly light,
heavy and ranged units, number of friendly workers, number of
opponent light, heavy and ranged units, number of opponent
workers, flag if a friendly base is under threat (true / false),
number of friendly and opponent resources left, number of
friendly and opponent bases, number of friendly and opponent
barracks. Every recorded line is then paired with every unit-
action that the opponent executes.

To create the policy action sets, the following possible
actions from which to choose (they are indexed by microRTS
for faster processing) are first defined: No action taken (0), move
(1), harvest (2), unit returns (3), produce (4), attack location (5).
Second, three basic policy action sets are created from the set of
possible actions:

• Resource gathering/harvesting policy: No action
taken (0), harvest (2).

• Tactical policy: No action taken (0), move (1), unit
returns (3), attack location (5).

• Production policy: No action taken (0), produce (4).

The unified action naming for the actions move and produce
is used (i.e. moves up, down, left, right are represented
uniformly as a move), but further decomposition of actions is
also viable. Every basic policy holds the no action taken (0) to
represent a choice (a unit can choose this option at any time).

The confidence value θcv was set to 0.5 and maximum
passed time was set to -1 (so that all the records from the first
game frame forward are kept). The maximum running game
time was set to 3,000 frames. The uARMSolver and microRTS
experimental environments were used with default values (i.e.
as they are published on GitHub in their original form).

The experiment included three testing game agents:
RandomBiasedAI, UCT and NaiveMCTS [12] [42]. The testing
game agents played against the RandomAI agent on the pre-
included microRTS map called basesWorkers16x16. All the
game agents used are part of the microRTS environment
package. Each of the game agents played the game three times.
For each of the played games the extracted set of actions (i.e. the
number of times the action appeared in the mined rule set) per
different game agent is presented in Table I. The numbers inside

D. Novak and I. Fister Jr.• Adaptive Online Opponent Game Policy Modeling with Association Rule Mining

000262

each action set are indexed by the action index, and they show
the intensity of the action being used. For example, the action
set {5, 25, 8, 4, 8, 0} provides information that the action with
index 0 has intensity of 5 (i.e. this action was extracted from the
rules 5 times), the action with index 1 has an intensity of 25, and
so on. The number of the action is set to 0 if it hasn’t appeared
in the rule set at least once. The information of intensity can be
useful in steps 4 and 5 of the ogpmARM, as discussed in the next
section.

The Table I columns are divided to show action sets after the
ogpmARM is executed on the 500th, 1,000th, 1,500th, 2,000th,
2,500th and 3,000th milestone frame (milestone frames can be
seen as a time-line where a specific sub-strategy would take
place). Max. passed time is set to -1. The specific milestone
frames are omitted from Table I if the game has finished before
reaching them.

TABLE I. ACTIONS EXTRACTED IN STEP 3

 RandomBiasedAI UCT NaiveMCTS

1. 500th:

{5, 25, 8, 4, 8, 0}

500th:

{0, 28, 7, 5, 5, 0}

500th:

{7, 27, 6, 6, 3, 0}

1,000th:

{7, 30, 6, 5, 5, 0}

1,000th:

{10, 18, 5, 7, 3, 3}

1,000th:

{9, 19, 9, 5, 0, 4}

1,500th:

{8, 16, 3, 4, 6, 1}

1,500th:

{6, 17, 9, 5, 3, 2}

1,500th:

{10, 21, 8, 3, 3, 2}

2,000th:

{3, 16, 8, 5, 6, 4}

2,000th:

{0, 29, 4, 8, 3, 0}

/

2,500th:

{4, 27, 5, 4, 9, 1}

/ /

3,000th:

{4, 17, 9, 5, 6, 2}

/ /

2. 500th:
{16, 16, 5, 8, 12, 0}

500th:
{4, 19, 9, 7, 4, 0}

500th:
{5, 25, 7, 6, 8, 0}

1,000th:

{7, 10, 4, 4, 4, 0}

1,000th:

{5, 18, 5, 6, 2, 4}

1,000th:

{8, 23, 7, 4, 5, 0}

1,500th:
{3, 21, 3, 3, 6, 4}

1,500th:
{7, 15, 6, 5, 2, 1}

1,500th:
{10, 21, 6, 3, 5, 6}

2,000th:

{9, 11, 3, 5, 7, 1}

2,000th:

{8, 23, 5, 9, 1, 4}

/

2,500th:
{5, 17, 3, 2, 5, 3}

2,500th:
{6, 28, 8, 6, 1, 3}

/

3,000th:

{10, 16, 4, 5, 7, 2}

/ /

3. 500th:
{17, 12, 3, 6, 7, 0}

500th:
{12, 25, 8, 8, 2, 0}

500th:
{7, 18, 6, 5, 1, 0}

1,000th:

{19, 14, 5, 5, 8, 0}

1,000th:

{5, 20, 6, 5, 2, 1}

1,000th:

{5, 19, 4, 5, 6, 4}

1,500th:
{15, 18, 3, 7, 5, 0}

1,500th:
{4, 16, 4, 6, 3, 5}

1,500th:
{6, 18, 7, 5, 5, 3}

2,000th:

{9, 12, 3, 9, 2, 2}

2,000th:

{7, 18, 9, 4, 2, 2}

2,000th:

{8, 23, 3, 4, 4, 1}

2,500th:
{13, 14, 3, 5, 7, 4}

/ /

3,000th:

{7, 15, 6, 7, 4, 2}

/ /

VIII. DISCUSSION

From Table I it can be observed that all of the indexed
actions have appeared in it, and, therefore, the patterns of all the
basic policies are present. This observation is logical, since each
of the tested game agents has the capability for the full-blown
RTS game (i.e. resource gathering/harvesting, production and
military operations). On a side note, if this information isn’t

known in advance, the steps from 1 to 3 could be helpful for
identification of the level of sophistication of the game agent
(e.g. if the unknown game agent needs to be tested, or the game
agent which is still in the development phase performs as it
should).

The information of no action taken (0) from Table I is
disregarded, because this action is used in every game policy.
However, its intensity could still provide the clues about the
behavior of each game agent (e.g. overuse of it by a game agent
at the beginning (500th) of the game, could indicate a lack of the
agent`s directed strategical guidance).

There is a heavy presence of the action move (1) across all
three agents and all the frames` measures. When combined with
the action’s unit returns (3), and attack location (5), the tactical
(policy) pattern is formed (step 4), which is an important
opponent behavior to look out and care for. It can be observed
from Table I that this pattern never formed in the 500th frame
(i.e. we did not have agents utilizing early rush/attack tactics). It
only starts appearing in the 1,000th frame (and only UCT always
utilized it until then). Agents who use tactical pattern early on
are clearly offensive oriented. Step 5 of the ogpmARM would
therefore create countermeasures like additional unit production
and increased tactical policy usage (as the adage says: “The best
defense is a good offense.”).

NaiveMCTS data reveal interesting facts when step 4 of the
ogpmARM is utilized. In all three games, at the beginning of the
game, the agent utilizes a fair amount of resource gathering
pattern (harvesting actions (2) for the 500th frame are: 1st game -
6x, 2nd game - 7x, 3rd game - 6x). In the 1st game the intensity of
the production pattern is low (action produce(4)), but the tactical
policy pattern is present. In the 2nd and 3rd games, the agent
utilizes a fair amount of the production pattern, as well as
incorporation of a tactical policy pattern, and both stay
consistent across the middle and/or end games. This creates
constant pressure on the opponent, and the game ends quickly
afterwards (always in under the 2,000th frame).

IX. CONCLUSION

In this article the adaptive online ogpmARM is proposed,
which, at its core, utilizes ARM. The preliminary observations
of the data show that matching pre-defined policies with the
actions acquired from the rule sets of the uARMSolver, provides
useful game policies (patterns) when tested on three game
agents. Countermeasures based on those findings could be
valuable in the actual/commercial games, which are one of the
focuses of our future research. However, because the
commercial games are usually controlled tightly, which poses
challenges to the interested researchers [32], the plan is to try
testing the ogpmARM in free RTS game engines such as Spring
[43] (some of the games built upon this engine are based on the
commercial game Total Annihilation™), or take advantage of
the Brood War Application Programming Interface (BWAPI)
[44], which allows interaction with the popular commercial
StarCraft™ game engine.

We would also like to take the future research direction of
comparing our ogpmARM against other well-known
Reinforcement Learning (RL) algorithms. One of such on-
policy based RL algorithm groups that we would like to try are

CINTI 2021 • IEEE 21st International Symposium on Computational Intelligence and Informatics • November 18-20, 2021 • Budapest, Hungary

000263

the Proximal Policy Optimization algorithms [45]. Additionally,
we could also consider testing the ogpmARM on other types of
strategy games (e.g. turn-based strategy games), where the
players do not play simultaneously, and where there is more time
for considering the optimal strategical/tactical countermeasures.
Therefore, the Deep Learning RL methods could also be
considered, such as Deep Q-Learning from demonstrations [46].

There is also much room for improvement of the ogpmARM
in the form of automatic feature extraction, which would then be
used in the rules` generation. The ogpmARM could also serve
us as the previously unknown game policy (pattern) generator
(i.e. combining the actions extracted from rules based on their
intensity). Such generated policies could then be incorporated in
the game agent, therefore removing the need for manual creation
of them. This way we could also create multiple variations of the
same game policy (e.g. policies where only one action differs)
regarding the specific RTS aspect (e.g. different types of
resource gathering).

The overall usefulness of the ogpmARM lies in its time
management, where adjusting time interval during which the
records are used while in-game (i.e. online learning), we can
search for patterns regarding RTS micromanagement of units
(shortest time span of the game), tactics (medium time span) or
possibly even strategies (longest time span). Time management
and avoiding the need of pre-processing large amount of the
replays, could provide the edge advantage in highly complex
environments of RTS game spaces.

ACKNOWLEDGMENT

The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No. P2-
0057).

REFERENCES

[1] P. Jordan, W. Buente, P. A. Silva, and H. Rosenbaum, “Selling out the
magic circle: free-to-play games and developer ethics,” in Proceedings of
1st International Joint Conference of DiGRA and FDG, vol. 13, no. 1, pp.
1-16, 2016.

[2] G. M. Costa, and T. B. Borchartt, “Procedural terrain generator for
platform games using Markov chain,” in Proceedings of SBGames 2018,
2018.

[3] S. Saaidin, and M. Kassim, “Recommender System: Rating predictions of
Steam Games Based on Genre and Topic Modelling,” in 2020 IEEE
International Conference on Automatic Control and Intelligent Systems
(I2CACIS), IEEE, pp. 212-218, 2020.

[4] S. Castree, “A Problem Old as Pong: Video Game Cloning and the Proper
Bounds of Video Game Copyrights,” available at SSRN 2322574, 2013.

[5] L. B. Çapli, “Serious game development methodology with system and
human oriented approach,” Master’s thesis, Middle East Technical
University, 2019.

[6] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu et al, “Towards
playing full moba games with deep reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[7] G. Synnaeve, and P. Bessiere, “Multiscale Bayesian modeling for RTS
games: An application to StarCraft AI,” IEEE Transactions on
Computational intelligence and AI in Games, vol. 8, no. 4, pp. 338-350,
2015.

[8] F. Schadd, S. Bakkes, and P. Spronck, “Opponent Modeling in Real-Time
Strategy Games,” in GAMEON, pp. 61-70, 2007.

[9] J. Leopold, I. Alobaidi, and N. Eloe, “Predictive Analysis of Real-Time
Strategy Games Using Discriminative Subgraph Mining,” in ICDM, pp.
176-190, 2019.

[10] Q. Li, Z. Wu, H. Qu, and X. Ma, “Co-Design of an Interactive Analytics
System for Multiplayer Online Battle Arena Game Occurrences,” Data
Analytics Applications in Gaming and Entertainment, Auerbach
Publications, pp. 247-276, 2019.

[11] G. Bosc, M. Kaytoue, C. Raïssi, and J. F. Boulicaut, “Strategic Patterns
Discovery in RTS-games for E-Sport with Sequential Pattern Mining,” in
MLSA@ PKDD/ECML, pp. 11-20, 2013.

[12] S. Ontanón, “The combinatorial multi-armed bandit problem and its
application to real-time strategy games,” in Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 9, no. 1, 2013.

[13] M. Stanescu, N. A. Barriga, and M. Buro, “Hierarchical Adversarial
Search Applied to Real-Time Strategy Games”, in Tenth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2014.

[14] M. Magnusson, and T. Hall, “Adaptive goal oriented action planning for
RTS games”, Independent thesis Basic level, Blekinge Institute of
Technology, School of Computing, 2010.

[15] S. Ontanón, “Informed monte carlo tree search for real-time strategy
games,” in 2016 IEEE Conference on Computational Intelligence and
Games, IEEE, pp. 1-8, 2016.

[16] N. A. Barriga, M. Stanescu, F. Besoain, and M. Buro, “Improving RTS
game AI by supervised policy learning, tactical search, and deep
reinforcement learning,” IEEE Computational Intelligence Magazine,
vol. 14, no. 3, pp. 8-18, 2019.

[17] Y. N. Ravari, S. Bakkes, and P. Spronck, “Playing Styles in StarCraft,” in
European GAME-ON Conference on Simulation and AI in Computer
Games, 2018.

[18] S. Ontañón, N. A. Barriga, C. R. Silva, R. O. Moraes, and L. H. Lelis,
“The first microrts artificial intelligence competition,” AI Magazine, vol.
39, no. 1, pp.75-83, 2018.

[19] C. Si, Y. Pisan, and C. T. Tan, “A scouting strategy for real-time strategy
games,” in Proceedings of the 2014 Conference on Interactive
Entertainment, pp. 1-8, 2014.

[20] M. Abbadi, F. Di Giacomo, R. Orsini, A. Plaat, P. Spronck, and G.
Maggiore, “Resource entity action: A generalized design pattern for rts
games,” in International Conference on Computers and Games, Springer,
pp. 244-256, 2013.

[21] H. J. Van den Herik, H. H. L. M. Donkers, and P. H. Spronck, “Opponent
modelling and commercial games,” in Proceedings of the IEEE
Symposium on Computational Intelligence and Games, pp. 15-25, 2005.

[22] P. Yang, B. E. Harrison, and D. L. Roberts, “Identifying patterns in
combat that are predictive of success in MOBA games,” in Proceedings
of Foundations of Digital Games, 2014.

[23] M. Zohaib, “Dynamic difficulty adjustment (DDA) in computer games:
A review,” Advances in Human-Computer Interaction, 2018.

[24] H. Park, H. C. Cho, K. Lee, and K. J. Kim, “Prediction of early stage
opponents strategy for StarCraft AI using scouting and machine learning,”
in Proceedings of the Workshop at SIGGRAPH Asia, pp. 7-12, 2012.

[25] J. Goodman, and S. Lucas, “Does it matter how well I know what you’re
thinking? Opponent Modelling in an RTS game,” in 2020 IEEE Congress
on Evolutionary Computation, IEEE, pp. 1-8, 2020.

[26] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M.
Preuss, “RTS AI Problems and Techniques,” in Encyclopedia of
Computer Graphics and Games, Springer, 2019.

[27] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and H. Irandoust,
“Opponent Behaviour Recognition for Real-Time Strategy Games,” in
Proceedings of the 5th AAAI Conference on Plan, Activity, and Intent
Recognition, ser. AAAI Workshops, vol. 10, no. 5, 2010.

[28] B. D. King, “Adversarial planning by strategy switching in a real-time
strategy game,” Master’s thesis, Oregon State University, 2012.

[29] N. Barriga, M. Stanescu, and M. Buro, “Puppet search: Enhancing
scripted behavior by look-ahead search with applications to real-time
strategy games,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 11, no. 1, 2015.

[30] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Machine learning proceedings 1994, Morgan
Kaufmann, pp. 157-163, 1994.

D. Novak and I. Fister Jr.• Adaptive Online Opponent Game Policy Modeling with Association Rule Mining

000264

[31] B. King, A. Fern, and J. Hostetler, “Adversarial Policy Switching with
Application to RTS Games,” in Eighth Artificial Intelligence and
Interactive Digital Entertainment Conference, vol. 8, no. 1, 2012.

[32] J. L. Hsieh, and C. T. Sun, “Building a player strategy model by analyzing
replays of real-time strategy games,” in 2008 IEEE International Joint
Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pp. 3106-3111, 2008.

[33] A. Elogeel, “Selecting robust strategies in RTS games via concurrent plan
augmentation,” Doctoral dissertation, 2015.

[34] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS
game combat scenarios”, in Proceedings of the AAAI conference on
artificial intelligence and interactive digital entertainment, vol. 8, no. 1,
2012.

[35] A. Uriarte, and S. Ontanón, “Game-tree search over high-level game
states in RTS games,” in Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, vol. 10, no.
1, 2014.

[36] A. Uriarte, and S. Ontanón, “Combat models for RTS games,” IEEE
Transactions on Games, vol. 10, no. 1, pp. 29-41, 2017.

[37] I. Fister Jr., and I. Fister, “A brief overview of swarm intelligence-based
algorithms for numerical association rule mining,” Applied Optimization
and Swarm Intelligence, Springer, 2020.

[38] E. V. Altay, and B. Alatas, “Performance analysis of multi-objective
artificial intelligence optimization algorithms in numerical association

rule mining,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1-21, 2019.

[39] E. V. Altay, and B. Alatas, “Intelligent optimization algorithms for the
problem of mining numerical association rules,” Physica A: Statistical
Mechanics and its Applications, 540, 123142, 2020.

[40] I. Fister, and I. Fister Jr., “uARMSolver: A framework for Association
Rule Mining,” arXiv preprint arXiv:2010.10884, 2020.

[41] H. T. Kim, and K. J. Kim, “Learning to recommend game contents for
real-time strategy gamers,” in 2014 IEEE Conference on Computational
Intelligence and Games, IEEE, pp. 1-8, 2014.

[42] Z. Yang, and S. Ontanon, “An Empirical Survey on Methods for
Integrating Scripts into Adversarial Search for RTS Games,” in IEEE
Transactions on Games, IEEE, 2021.

[43] K. D. Rogers, and A. A. Skabar, “A micromanagement task allocation
system for real-time strategy games,” in IEEE Transactions on
Computational Intelligence and AI in Games, vol. 6, no. 1, pp. 67-77,
2014.

[44] A. Heinermann, “Broodwar API,” https://github.com/bwapi/bwapi, 2013.
[Online]. Available: https://github.com/bwapi/bwapi

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” preprint at
https://arxiv.org/abs/1707.06347v2, 2017.

[46] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot et al.,
“Deep q-learning from demonstrations,” in Thirty-second AAAI
conference on artificial intelligence, 2018.

CINTI 2021 • IEEE 21st International Symposium on Computational Intelligence and Informatics • November 18-20, 2021 • Budapest, Hungary

000265

D. Novak and I. Fister Jr.• Adaptive Online Opponent Game Policy Modeling with Association Rule Mining

000266

