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Abstract—Opponent modeling is a research aspect that needs 

close attention when facing an opponent in a complex game 

environment. Real-Time Strategy (RTS) games are a 

representative of one of the highest complex game environments.  

In RTS games, the players` tactical and strategical decisions need 

constant adaptation in order to win the game. In this work, a 

preliminary study is reported on opponent modeling in RTS 

games via the incorporation of association rule mining to identify 

game policies in online mode. Such insight into opponents’ mode 

of operation should provide a player with vital information 

regarding choosing advantageous gameplay countermeasures 

against an opponent. 

Keywords—Association Rule Mining, Artificial Intelligence in 

games, Numerical Association Rule Mining, opponent policy 

modeling, Real-Time Strategy games, uARMSolver 

I. INTRODUCTION 

Digital games are a great form of entertainment for many 
players. Due to the variety of games, different categorizations 
are used to group them accordingly. They can be categorized by 
genres (genres such as Massive Multiplayer Online games [1], 
2D platform games [2], or survival-based games [3]), 
development models (e.g. indie games [4]), domains (e.g. 
serious games in education and training [5]), computational 
complexities (e.g. Multi-player Online Battle Arena [6] with 
enormous state-action space), to name the few. One of the game 
genre games at the top of the list of computational complexity 
[7] is Real-Time Strategy (RTS) games. 

RTS games are a genre of video games where players have 
to master gameplay aspects such as production and resource 
management (game-specific units and structures can be made 
with careful utilization of resources), gameplay decisions 
(ranging from high strategical command across tactical 
decisions all the way to the low-level unit behavior), scouting 
(of opponent units), and sometimes even diplomacy, to gain an 
edge advantage in the game, which would result in victory for 
the player. So, for the player to be able to defeat the opponent, 
constant overwatch must be made regarding what the opponent 
is doing (opponent modeling [8]), with adjustments to their own 
gameplay made accordingly. 

The main research idea regarding opponent modeling is to 
use the Machine Learning (ML) approach, more specifically 
Association Rule Mining (ARM), to perform a search for rules 

on the RTS data gathered during the online gameplay (i.e. while 
the game is being played). The action part of the rules is then 
matched to the pattern, where the patterns are represented with 
predefined game policies. By achieving a successful pattern 
match, a conclusion can be made regarding which game policy 
is used by the opponent, and proper adjustments and 
countermeasures can be executed.  

The paper is structured as follows. In the second section the 
main definitions for the game blocks needed in the method are 
identified in the related works. Section three discusses RTS 
game subdomains important to the research regarding opponent 
modeling. Section four presents Numerical Association Rule 
Mining (NARM). The motivation, design and limitations of the 
opponent game policy modeling method are provided in section 
five. The method is proposed in section six. In section seven the 
method design is tested with the experiment and the results are 
provided. Section eight provides the discussion. The article 
concludes in section nine.  

II. GAME BLOCKS IDENTIFIED IN RELATED WORKS 

In this section the main game blocks are presented which are 
required in the concept of method, and which were identified 
through the related works. Specifically, the focus is on the rule 
mining, pattern, feature and replays inside the game domain. 

In Leopold et al. [9] it was noted that rule mining typically 
generates a considerable number of rules, from which only rules 
meeting a certain support threshold are kept. Therefore, the need 
was identified for the threshold to be included into this research.  

In Li et al. [10] a loose definition of a pattern was provided 
in this quote: “There are no fixed rules of what constitutes a 
“pattern” in gameplay, and thus any dimension (e.g., time, 
position, events) or a combination of multiple dimensions can 
contain the factor(s) that define(s) a pattern behaviors.”. They 
also wrote that existing data-driven game analysis methods 
depend on data experts to construct a representative feature 
space with external knowledge manually. 

In Bosc et al. [11] they represented a pattern as a frequent 
series of game actions done by the two players extracted from a 
large database of replay games. They also defined replay as a 
match record that contains all actions generated by the players. 
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III. REAL-TIME STRATEGY GAME SUBDOMAINS 

A short theoretical background of RTS game subdomains 
relevant to this work is provided in this section. First, a short 
description is given of some of the key aspects regarding the 
RTS games, especially how they differentiate from the classical 
board games upon which they are based. In this segment the 
microRTS [12] is also described, which is a simulation 
environment designed for rapid testing of new research ideas. 
The environment will be used in the experiment to gather data 
on the RTS features. Next, descriptions are provided regarding 
features and their connection to the rules. Rules are basic 
components upon which the opponent modeling is based, and 
for which the description is also given. The section concludes 
with game policy explanations. 

A. Key aspects of a Real-Time Strategy games and microRTS 

simulation environment 

RTS games somewhat share the principle of their turn-based 
board game cousins regarding the action execution, but the 
actual implementation differs in a few important key points. In 
the turn-based board games (e.g. chess) actions upon the game 
environment (e.g. the chess board) are executed in turns (e.g. 
after the first player made a move/action the second player has 
time to make his/her move). This is the same for the RTS games, 
but with the important difference of a real-time component. The 
actions can be executed upon every new game state, which, in 
RTS games, usually happens 24 [13] or 30 [14] times per second 
(ca. 30 milliseconds between a change of game states). 
Therefore, the game is played out in real-time, where, for the 
human player, (who observes the game on a second-time scale), 
it looks like the actions and their results showing in the 
environment are instant (seamless progression of the game). 

The second important difference is that both players can 
execute their actions on every game state (simultaneous moves), 
as opposed to the turn-based board games, where the first player 
executes a move on the game board, followed by the move of 
the second player upon the new/updated game board. 

The third difference is that there is not only one action made 
per player and per game state, but each player can execute 
multiple actions per every game state. In fact, the player can 
execute an action for every unit (called unit-action) in his/her 
possession present in the game environment. A combined group 
of all the unit-actions is presented in the form of player-actions 
[15]. 

The microRTS supports all the above-mentioned key 
aspects, as well as some others, such as: Durative actions (i.e. 
they are not instant, so they can last over multiple game states), 
various sizes of game maps, support for multiple players, 
options to make the game environment partially observable and 
non-deterministic, etc. It supports production of units and 
structures, resource gathering, and the support for battle game 
mechanics. Its simplicity comes on account of the small number 
of supported units (one type of resource gathering unit called a 
worker, which can also attack, and three purely battle oriented 
units: Light, heavy, ranged) and structures (two structures, 
named base and barracks), unit move capabilities (up, down, 
left, and right), the small number of unit parameter types, 2D 
only environment, and the like. However, although the 

microRTS environment is kept simple, the full RTS complexity 
is retained. 

B. Features and rules 

Some of the commonly found features in RTS games are unit 
type, health and terrain/map [16]. In a typical RTS game the 
number of features can surpass hundreds [17]. Basic features 
(e.g. microRTS’s unit types [18]) are usually accessed directly 
through the methods found in the game engine, like those 
connected to the game state. The game state can also hold 
extended feature information, like which durative actions units 
on the game map are currently executing. 

Commercial games usually address specific RTS game 
aspects (e.g. tactical battlefield-arrangements) with the help of 
basic feature information extraction from the game engine [19]. 
Extraction can be made by hand, and stored in the form of a rule, 
where the rule is defined as the regular continuous aspect of the 
game [20], with different recombinations of rules forming a 
(dynamic) script [21] or pattern [22]. Such constructs can then 
be used to create opponents [23], as well as to model opponents 
[24]. 

C. Opponent modeling 

Playing the RTS game is more than just following a strategy 
agenda set in a straight line. One must also be cautious about the 
surrounding environment, especially of every action performed 
by the opponent, so that corrections can be made of the tactics 
and alterations in the general strategy. Anticipating what the 
opponent will or can do through opponent modeling is, 
therefore, a requirement for a good game performance [25]. 

If an assumption is made that an RTS game agent 
implements strategic and tactical command [26] and can 
recognize opponents’ intentions [27], synergy of these two 
agents` mechanics should result in a better performance. 
Meaning, an agent can change tactics on the fly, and the 
strategies can be changed [28] or enhanced (e.g. enhancing 
scripted behavior through a look-ahead search [29]).  

Since the RTS games are the most complex game genre 
environments [7], the possibility of finding all the possible 
strategies at a given time is intractable. But, given that RTS 
games are Markov games [30], it is often possible to learn a set 
of policies that encapsulate the diversity of possible strategies 
[31]. To investigate players and to create such policies, replay 
logs of the already played games (e.g. games of professional 
players) may be a beneficial method [32]. 

D. Game policy 

Designing a general game policy for the RTS games is not 
an easy task, due to the multiple simultaneous aspects of the 
game that must be considered. Aspects such as resource 
gathering, battles, production of new structures and buildings,  
or research tree extensions. Therefore, to be able to cope with 
the problem of managing all those aspects, the researchers have 
to divide the problem into subproblems, based on the planning 
timescale (strategy, tactics and reactive control), and by the 
subproblem`s function (production and resource management, 
opponent modeling, scouting operations, and others) [33].  

Static game policies that are predefined (scripted) in the 
game agents are obviously not as good a choice as the dynamic 
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ones. However, their advantage is speed, because they are 
vulnerable against search-based methods [34]. The game agents 
therefore depend on a good design of game policy, which will 
be robust enough to help deal with seemingly similar game 
situations, unpredictable, so that the opponent will have a hard 
time figuring out its plans, fast and dynamic in a sense of 
offering variability of operations in the same game scenarios. 
Game policy can also be dependent on the state-evaluation and 
state-forwarding functions [35] (the usage of different kinds of 
models, e.g. combat models [36]). 

IV. NUMERICAL ASSOCIATION RULE MINING 

ARM stands for an important ML method whose task is to 
find relationships between attributes in a transaction database 
[37]. These relationships are presented as implications, where 
the left side of the mined rule represents an antecedent and the 
right side the consequent. The roots of ARM go back to the early 
90s, when the first algorithm named Apriori was proposed.  

NARM is considered as a variation of ARM [38][39]. The 
main difference between NARM and ARM lies in handling 
numerical attributes, where, in NARM, numerical attributes are 
handled without discretization. It means that NARM algorithms 
operate directly with both categorical, as well as numerical, 
attributes. Typically, discretization introduces certain problems 
which result in the loss of information and noise entering into 
data. Thus, NARM algorithms which do not need discretized 
data as an input provide more exact mined rules. Nowadays, 
most of the NARM algorithms are based on stochastic 
population-based nature-inspired algorithms due to their ability 
for searching the very big search space. 

 uARMSolver (universal ARM Solver) is a novel software 
tool for tackling the NARM [40]. Software is written fully in 
C++ and runs on all platforms. uARMSolver covers all stages of 
the ARM process, from data preprocessing, rule mining and 
visualization of results. Many NARM algorithms are included 
in this tool, e.g. algorithms based on Differential Evolution or 
Firefly algorithms. 

V. MOTIVATION, DESIGN AND LIMITATIONS OF THE 

PROPOSED OPPONENT GAME POLICY MODELING METHOD 

The main idea is to record every action that the opponent has 
done in the game environment, along with all the relevant game 
feature information during the game playout. This information 
is saved, because the past holds important clues which can reveal 
the gameplay patterns of the opponent. By recording the 
opponent, mining for rules in such a recording and creating a 
pattern upon the rules, which results in finding the most probable 
game policy, can provide an advantage in the game. For 
example, if, at the beginning of the game, the game agent`s  
game policy selects advanced production, which provides an 
advantage in the middle game, but the opponent plans an early 
rush tactic which would destroy the game agent`s base before 
the game really even starts, and a discovery of the planned 
opponents rushing game policy is made, the game agent can 
immediately execute countermeasures (e.g. switching the tactics 
to building an early defense). 

The design is also driven by the choice to have a method 
capable of providing results without the need for the forward 

model, i.e. no simulations into the possible future game states. 
Every result is, therefore, derived from the history of past states 
(replay of the opponent’s gameplay actions). Such method could 
prove its worth where there is no access to the future model (e.g. 
the game engine/environment doesn’t support such calls, or 
there is no viable solution to simulate future states), or where the 
game agent must only operate at runtime / online mode (no pre-
processing available). 

The method is also implemented to be time adjustable, to 
enable the possibility of discovering what patterns the opponent 
is using in a chosen time frame. A time frame component is 
important, because by setting it to the nearby time (i.e. the last 
half minute of game time), patterns regarding recent tactics can 
be discovered, and by setting a longer period (e.g. the whole 
game from the beginning to the current game frame), 
extrapolation of tactics (or even strategies) that are being used 
over a longer period of time are possible. 

There are some limitations or shortcomings regarding this 
chosen design. The first obvious one is that, if the opponent 
changes his/her patterns of gameplay during the game, this will 
only be sensed in the next state (or the next few states) when 
new information is processed and new patterns are discovered. 
No future predictions are made at this point. 

A current shortcoming is that automatic RTS feature 
identification and extraction are not implemented yet. The first 
feature identification is made by hand, but possible 
improvements are planned for future research articles (e.g. 
feature extraction as the preprocessing step [41]).  

VI. CONCEPT OF METHOD 

The method for opponent game policy modeling with ARM 
(ogpmARM) (Fig. 1) is proposed and described in the following 
steps: 

1. Define: 

• The relevant game features that are recorded 
from the game state during the gameplay. 

• The confidence value threshold θcv above 
which the rules provided by uARMSolver will 
be kept. 

• The maximum passed time for which the rules 
are kept. It can also be expressed in the form 
of the value of passed game state iterations. 

2. Whenever the opponent executes the player-action, the 
values for chosen features from the game state are 
recorded, along with the action-type (e.g. move, attack, 
produce, and other actions). One line of the data record 
is created for each unit-action found in the player-action 
set. The record is only made during a set time interval. 
Previous saved records are deleted. The closed time 
interval during which the records are kept is [a - mpt, a], 
where a is the result of a function call 
time(current_frame_num), and mpt is the maximum 
passed time for which the rules are kept. If the start of 
the interval is under 0, or if the mpt is set to -1, the 
interval starts with the first game frame (beginning of 
the game). 
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Fig. 1. Method for opponent game policy modeling with ARM (ogpmARM). 

3. The ARM is executed upon the gathered data set and the 
rules above the θcv are selected. The action-types are 
then extracted from the rules. That action-type 
represents the action which has the highest confidence 
for being the main action type that the opponent is using.  

4. The policies where the extracted action type is present 
are selected from the pre-defined set of game policies. 
The set of chosen game policies forms a pattern. 

5. Use the pattern for strategic and tactical decisions 
against the opponent. 

VII. EXPERIMENT AND RESULTS 

The microRTS [42] game simulation environment (used in 
IntelliJ IDEA 2020.3 tools with OpenJDK 11.0.5) was utilized 
for the purpose of data gathering. 

The following relevant game state features are defined for 
which the values will be recorded:  Number of friendly light, 
heavy and ranged units, number of friendly workers, number of 
opponent light, heavy and ranged units, number of opponent 
workers, flag if a friendly base is under threat (true / false), 
number of friendly and opponent resources left, number of 
friendly and opponent bases, number of friendly and opponent 
barracks. Every recorded line is then paired with every unit-
action that the opponent executes. 

To create the policy action sets, the following possible 
actions from which to choose (they are indexed by microRTS 
for faster processing) are first defined: No action taken (0), move 
(1), harvest (2), unit returns (3), produce (4), attack location (5). 
Second, three basic policy action sets are created from the set of 
possible actions:  

• Resource gathering/harvesting policy: No action 
taken (0), harvest (2). 

• Tactical policy: No action taken (0), move (1), unit 
returns (3), attack location (5). 

• Production policy: No action taken (0), produce (4). 

The unified action naming for the actions move and produce 
is used (i.e. moves up, down, left, right are represented 
uniformly as a move), but further decomposition of actions is 
also viable. Every basic policy holds the no action taken (0) to 
represent a choice (a unit can choose this option at any time).  

The confidence value θcv was set to 0.5 and maximum 
passed time was set to -1 (so that all the records from the first 
game frame forward are kept). The maximum running game 
time was set to 3,000 frames. The uARMSolver and microRTS 
experimental environments were used with default values (i.e. 
as they are published on GitHub in their original form). 

The experiment included three testing game agents: 
RandomBiasedAI, UCT and NaiveMCTS [12] [42]. The testing 
game agents played against the RandomAI agent on the pre-
included microRTS map called basesWorkers16x16. All the 
game agents used are part of the microRTS environment 
package. Each of the game agents played the game three times. 
For each of the played games the extracted set of actions (i.e. the 
number of times the action appeared in the mined rule set) per 
different game agent is presented in Table I. The numbers inside 
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each action set are indexed by the action index, and they show 
the intensity of the action being used. For example, the action 
set {5, 25, 8, 4, 8, 0} provides information that the action with 
index 0 has intensity of 5 (i.e. this action was extracted from the 
rules 5 times), the action with index 1 has an intensity of 25, and 
so on. The number of the action is set to 0 if it hasn’t appeared 
in the rule set at least once. The information of intensity can be 
useful in steps 4 and 5 of the ogpmARM, as discussed in the next 
section. 

The Table I columns are divided to show action sets after the 
ogpmARM is executed on the 500th, 1,000th, 1,500th, 2,000th, 
2,500th and 3,000th milestone frame (milestone frames can be 
seen as a time-line where a specific sub-strategy would take 
place). Max. passed time is set to -1. The specific milestone 
frames are omitted from Table I if the game has finished before 
reaching them.  

TABLE I.  ACTIONS EXTRACTED IN STEP 3 

 RandomBiasedAI UCT NaiveMCTS 

1. 500th: 

{5, 25, 8, 4, 8, 0} 

500th:  

{0, 28, 7, 5, 5, 0} 

500th: 

{7, 27, 6, 6, 3, 0} 

1,000th: 

{7, 30, 6, 5, 5, 0} 

1,000th: 

{10, 18, 5, 7, 3, 3} 

1,000th: 

{9, 19, 9, 5, 0, 4} 

1,500th: 

{8, 16, 3, 4, 6, 1} 

1,500th: 

{6, 17, 9, 5, 3, 2} 

1,500th: 

{10, 21, 8, 3, 3, 2} 

2,000th: 

{3, 16, 8, 5, 6, 4} 

2,000th: 

{0, 29, 4, 8, 3, 0} 

/ 

2,500th: 

{4, 27, 5, 4, 9, 1} 

/ / 

3,000th: 

{4, 17, 9, 5, 6, 2} 

/ / 

2. 500th: 
{16, 16, 5, 8, 12, 0} 

500th: 
{4, 19, 9, 7, 4, 0} 

500th: 
{5, 25, 7, 6, 8, 0} 

1,000th: 

{7, 10, 4, 4, 4, 0} 

1,000th: 

{5, 18, 5, 6, 2, 4} 

1,000th: 

{8, 23, 7, 4, 5, 0} 

1,500th: 
{3, 21, 3, 3, 6, 4} 

1,500th: 
{7, 15, 6, 5, 2, 1} 

1,500th: 
{10, 21, 6, 3, 5, 6} 

2,000th: 

{9, 11, 3, 5, 7, 1} 

2,000th: 

{8, 23, 5, 9, 1, 4} 

/ 

2,500th: 
{5, 17, 3, 2, 5, 3} 

2,500th: 
{6, 28, 8, 6, 1, 3} 

/ 

3,000th: 

{10, 16, 4, 5, 7, 2} 

/ / 

3. 500th: 
{17, 12, 3, 6, 7, 0} 

500th: 
{12, 25, 8, 8, 2, 0} 

500th: 
{7, 18, 6, 5, 1, 0} 

1,000th: 

{19, 14, 5, 5, 8, 0} 

1,000th: 

{5, 20, 6, 5, 2, 1} 

1,000th: 

{5, 19, 4, 5, 6, 4} 

1,500th: 
{15, 18, 3, 7, 5, 0} 

1,500th: 
{4, 16, 4, 6, 3, 5} 

1,500th: 
{6, 18, 7, 5, 5, 3} 

2,000th: 

{9, 12, 3, 9, 2, 2} 

2,000th: 

{7, 18, 9, 4, 2, 2} 

2,000th: 

{8, 23, 3, 4, 4, 1} 

2,500th: 
{13, 14, 3, 5, 7, 4} 

/ / 

3,000th: 

{7, 15, 6, 7, 4, 2} 

/ / 

 

VIII. DISCUSSION 

From Table I it can be observed that all of the indexed 
actions have appeared in it, and, therefore, the patterns of all the 
basic policies are present. This observation is logical, since each 
of the tested game agents has the capability for the full-blown 
RTS game (i.e. resource gathering/harvesting, production and 
military operations). On a side note, if this information isn’t 

known in advance, the steps from 1 to 3 could be helpful for 
identification of the level of sophistication of the game agent 
(e.g. if the unknown game agent needs to be tested, or the game 
agent which is still in the development phase performs as it 
should). 

The information of no action taken (0) from Table I is 
disregarded, because this action is used in every game policy. 
However, its intensity could still provide the clues about the 
behavior of each game agent (e.g. overuse of it by a game agent 
at the beginning (500th) of the game, could indicate a lack of the 
agent`s directed strategical guidance). 

There is a heavy presence of the action move (1) across all 
three agents and all the frames` measures. When combined with 
the action’s unit returns (3), and attack location (5), the tactical 
(policy) pattern is formed (step 4), which is an important 
opponent behavior to look out and care for. It can be observed 
from Table I that this pattern never formed in the 500th frame 
(i.e. we did not have agents utilizing early rush/attack tactics). It 
only starts appearing in the 1,000th frame (and only UCT always 
utilized it until then). Agents who use tactical pattern early on 
are clearly offensive oriented. Step 5 of the ogpmARM would 
therefore create countermeasures like additional unit production 
and increased tactical policy usage (as the adage says: “The best 
defense is a good offense.”). 

NaiveMCTS data reveal interesting facts when step 4 of the 
ogpmARM is utilized. In all three games, at the beginning of the 
game, the agent utilizes a fair amount of resource gathering 
pattern (harvesting actions (2) for the 500th frame are: 1st game - 
6x, 2nd game - 7x, 3rd game - 6x). In the 1st game the intensity of 
the production pattern is low (action produce(4)), but the tactical 
policy pattern is present. In the 2nd and 3rd games, the agent 
utilizes a fair amount of the production pattern, as well as 
incorporation of a tactical policy pattern, and both stay 
consistent across the middle and/or end games. This creates 
constant pressure on the opponent, and the game ends quickly 
afterwards (always in under the 2,000th frame).  

IX. CONCLUSION 

In this article the adaptive online ogpmARM is proposed, 
which, at its core, utilizes ARM. The preliminary observations 
of the data show that matching pre-defined policies with the 
actions acquired from the rule sets of the uARMSolver, provides 
useful game policies (patterns) when tested on three game 
agents. Countermeasures based on those findings could be 
valuable in the actual/commercial games, which are one of the 
focuses of our future research. However, because the 
commercial games are usually controlled tightly, which poses 
challenges to the interested researchers [32], the plan is to try 
testing the ogpmARM in free RTS game engines such as Spring 
[43] (some of the games built upon this engine are based on the 
commercial game Total Annihilation™), or take advantage of 
the Brood War Application Programming Interface (BWAPI) 
[44], which allows interaction with the popular commercial 
StarCraft™ game engine.  

We would also like to take the future research direction of 
comparing our ogpmARM against other well-known 
Reinforcement Learning (RL) algorithms. One of such on-
policy based RL algorithm groups that we would like to try are 
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the Proximal Policy Optimization algorithms [45]. Additionally, 
we could also consider testing the ogpmARM on other types of 
strategy games (e.g. turn-based strategy games), where the 
players do not play simultaneously, and where there is more time 
for considering the optimal strategical/tactical countermeasures. 
Therefore, the Deep Learning RL methods could also be 
considered, such as Deep Q-Learning from demonstrations [46]. 

There is also much room for improvement of the ogpmARM 
in the form of automatic feature extraction, which would then be 
used in the rules` generation. The ogpmARM could also serve 
us as the previously unknown game policy (pattern) generator 
(i.e. combining the actions extracted from rules based on their 
intensity). Such generated policies could then be incorporated in 
the game agent, therefore removing the need for manual creation 
of them. This way we could also create multiple variations of the 
same game policy (e.g. policies where only one action differs) 
regarding the specific RTS aspect (e.g. different types of 
resource gathering). 

The overall usefulness of the ogpmARM lies in its time 
management, where adjusting time interval during which the 
records are used while in-game (i.e. online learning), we can 
search for patterns regarding RTS micromanagement of units 
(shortest time span of the game), tactics (medium time span) or 
possibly even strategies (longest time span). Time management 
and avoiding the need of pre-processing large amount of the 
replays, could provide the edge advantage in highly complex 
environments of RTS game spaces. 
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