
Dynamic Genotype Reduction for Narrowing the
Feature Selection Search Space

Sašo Karakatič
Faculty of Electrical Engineering

and Computer Science
University of Maribor

Koroška cesta 46, 2000 Maribor
Email: saso.karakatic@um.si

Iztok Fister Jr.
Faculty of Electrical Engineering

and Computer Science
University of Maribor

Koroška cesta 46, 2000 Maribor

Dušan Fister
Faculty of Economics

and Business
University of Maribor

Razlagova ulica 14, 2000 Maribor

Abstract—Large search space optimization problems can pose
a challenge to any optimization approach, as there are many
chances for the algorithm to become stuck in the local optima.
In this paper, we present a novel dynamic representation of
genotype, where the search areas with low potential are discarded
from the search, and areas of the more significant potential for
global optimum are kept in focus. The validity of the proposed
method is tested on a large scale feature selection problem, using
an extensive dataset with a large number of features compared
to instances. An arrhythmia dataset was specifically chosen for a
case study, and a self-adaptive differential evolution algorithm
with the dynamic genotype reduction was implemented. The
results of the experiments are promising for the future since
the proposed method achieves better results than standard
feature selection with stochastic population-based nature-inspired
algorithms.

I. INTRODUCTION

Feature Selection (FS) is a computational process intended
to reduce/diminish the dimensionality of data. FS is a standard
step of Data Mining (DM) method (often machine learning),
which is a part of a Knowledge Discovery in Databases (KDD)
procedure. FS aims to select a subset of data features, which
performs better at the data mining problem, e.g., classification,
either because: (1) to achieve faster completion of the algo-
rithm, or (2) to eliminate data redundancy. Several variants of
FS exist, among most common are: filter-based, wrapper-based
and embedded-based. Filter-based perform FS separately from
DM, while wrapper-based combine FS and DM. Embedded-
based variants combine characteristics of both mentioned
variants. In this paper, the second variant is discussed, which
means that the evaluation of FS is intrinsically connected to
the DM method, e.g., artificial neural network (ANN), random
forests (RF), k-nearest neighbors, or others.

Evolutionary and swarm-based algorithms in the FS domain
are gaining their popularity in recent years, and literature
on this subject is also arising. Karakatič [1] has proposed
an EvoPreprocess FS framework that bases on meta-heuristic
and population-based nature-inspired algorithms (NIA) from
NiaPy [2]. The author has shown that the framework can
deal with high-dimensional and imbalanced datasets. Fister
et al. [3] have proposed an FS using the so-called threshold
mechanism, where a population-based NIA handles the atten-

dance of features in a test subset. Authors in [4] show FS
using the k-nearest neighbor algorithm and [5] show the FS
on a large, complex dataset. Authors in paper [6] research the
stability of filter- and wrapper-based FS procedures.

We define the FS problem as a wrapper-based, NIA op-
timized dynamically changing process that reduces/shortens
(eliminates) irrelevant features simultaneously with the evo-
lution. Whether irrelevant or redundant features exist in the
dataset, it is more effective to eliminate them instantly than to
keep them in a potential search space for forthcoming trial
solutions. Since the features that are eliminated cannot be
restored into potential search space anymore, such a solution
demands the implementation of dynamically reducing gene
representation.

Our approach thus differs from the mentioned literature
twofold. First, we implement the dynamically reducing gene
representation to eliminate redundant, low-variance, inexpen-
sive or irrelevant features completely during the online execu-
tion of the optimization algorithm, and second, we attain the
feature selection search space to narrow accordingly, keeping
the more expensive features for further space search and at
the same time decreasing the difficulty of the problem. Both
of the novelties in the paper are hypothesized to increase
classification results and reduce computation times.

The remainder of this paper is structured as follows. Sec-
tion II outlines the fundamentals of methods used in this paper,
while Section III presents the proposed method. Section IV is
devoted to the experiments and results. Paper is summarised
with the conclusions in Section V.

II. FUNDAMENTALS

Wide datasets, i.e., many features and a low number of
instances, are commonly referred to have a negative effect
in extracting patterns, e.g., in classification, as there are many
options to consider (many features) with a low amount of vari-
ance (low observation count). In this case, extracting patterns
from data can be extremely burdensome. Here, a compelling
expression named “Curse of Dimensionality” was introduced
by Bellman [7] to describe the problem of distinguishing the
noise from useful data.

A. Arrhythmia dataset

Wide dataset problem is prevalent in the dataset used in
this paper, called Arrhythmia, an example of a multivariate
dataset intended to detect the presence of cardiac arrhythmia
disease. In this dataset, 279 features, with values ranging
from negative to positive integer and floating-point values,
are supplied. The 452 instances of the dataset are classified
into 16 classes, with the majority falling into the “normal”
class and the rest incorporating any cardiac disorders. Some
essential characteristics of the dataset are shown in Tab. I;
interested readers are invited to read original website1 for a
detailed explanation of dataset.

TABLE I: Arrhythmia dataset details.

No. Feature No. Feature

1. Age Of channels*
2. Gender 28.-39. DII
3. Height 40.-51. DIII
4. Weight 52.-63. AVR
5. QRS duration 64.-75. AVL
6. P-R interval 76.-87. AVF
7. Q-T interval 88.-99. V1
8. T interval 100.-111. V2
9. P interval 112.-123. V3

Vector angles 124.-135. V4
10. QRS 136.-147. V5
11. T 136.-147. V5
12. P 148.-159. V6
13. QRST Of channel DI
14. J 160. JJ wave
15. Heart rate 161. Q wave

Of channel DI 162. R wave
16. Q wave average width 163. S wave
17. R wave average width 164. R’ wave
18. S wave average width 165. S’ wave
19. R’ wave average width 166. P wave
20. S’ wave average width 167. T wave
21. No. of intrinsic deflections 168. QRSA
22. Existence of ragged R wave 169. QRSTA

23. Existence of diphasic Of channels**
derivation of R wave 170.-179. DII

24. Existence of ragged P wave 180.-189. DIII

25. Existence of diphasic 190. 199. AVR
derivation of P wave 200.-209. AVL

26. Existence of ragged T wave 210. 219. AVF

27. Existence of diphasic 220.-279. V1, V2, V3
derivation of T wave V4, V5, V6

Note: “*” means similar as for 16.-27. features and “**” means
similar as 160.-169. features.
Source: UCI Machine Learning Repository.

B. Self-Adaptive Differential Evolution

Differential evolution (DE) [8] belongs to a class of evo-
lutionary algorithms and is considered a powerful and effi-
cient method for solving global optimization tasks. DE is a
population-based NIA that is composed of differential muta-
tion, crossover, and selection operators. Although DE is among
the most popular NIAs, its efficiency of searching through
search space depends heavily on suitable parameter control.
Finding a suitable combination of control parameter settings is
a very long-lasting process. Fortunately, some hybridized DE

1https://archive.ics.uci.edu/ml/datasets/Arrhythmia

variants with a self-adaptation of control parameters during
the optimization run were proposed, e.g., one of the most
efficient variants is jDE that was proposed in 2006 by Brest
et al. [9]. Here, each individual is extended with scale factor
F and crossover rate CR that undergo the variation operators,
mathematically represented as follows:

x
(t)
i = (x

(t)
i,1, x

(t)
i,2, ..., x

(t)
i,M , F

(t)
i ,CR

(t)
i). (1)

In jDE, both parameters are modified according to the
following equations:

F
(t+1)
i =

{
Fl + rand1 · (Fu − Fl) if rand2 < τ1,

F
(t)
i otherwise ,

(2)

and

CR
(t+1)
i =

{
rand3 if rand4 < τ2,

CR
(t)
i otherwise ,

(3)

where randi=1...4 ∈ [0, 1] are randomly generated values
drawn from uniform distribution in interval [0, 1], τ1 and τ2 are
learning rates, Fl and Fu lower and upper bound for parameter
F , respectively.

III. PROPOSED APPROACH

In literature, the FS procedure is commonly applied to
remove any redundant features and thus mitigate the curse of
dimensionality problem before the pattern extraction process.
However, large search space problem can also pose significant
difficulties to FS algorithms, i.e. optimization algorithms, since
increasing the search space may also incorporate numerous
local optima. With the arise of local optima, chances of
becoming stuck arise as well and chances the optimization
algorithm to continue the search towards the global optimum
diminish. NIA wrapper-based FSs [10]–[12] commonly suffer
from a large search space problem, where the larger the feature
set, the wider the search space.

To cope with the mentioned problem sufficiently, we pro-
pose a dynamic genotype reduction, using which we achieve
dynamic search space narrowing. Here, the optimization al-
gorithm’s genotype representation is automatically reduced
periodically. We expect that this search space narrowing might
(1) potentially improve the optimization process, or make it
less difficult and (2) subsequently shorten the computation
time needed for the search toward the global optimum. The
proposed method exploits the standard wrapper-based FS
procedure, optimized with NIA optimization methods from
EvoPreprocess, with periodic dynamic genotype reductions.

A. Genotype representation

Typically, the NIA representation of features in the wrapper-
based FS algorithm consists of a fixed-length array genotype,
where each gene covers precisely one feature of the dataset
(number of genes equal to the number of features). Genotypes
can be either (1) boolean values, where 1 represents the
attendance of i-th feature in a subset and 0 represents the
absence, or (2) real (floating-point) decimal values, usually
limited within the interval (0, 1), which are transformed into

Start

Initialize the
solutions

Apply operators on
the solutions

No

Yes

Ending criteria
satisfied?

Reconstruct
the solution

Finish

The best
solution

Population
of solutions

Population of
modified solutions

Initialize

No

Yes

Genotype
changing

time?

Evaluate the
solutions

Select solutions
that choose

redundant features

Select redundant
features to be

removed

Change genotype
by removing

redundant features

Changing genotype be removing redundant features

Change the
genotype

Return the
best solution

Reconstructed
best solution

Fig. 1: The optimization process for feature selection with changing genotype. Source: Authors.

the boolean form using a so-called mapping function, e.g.,
fixed thresholding at threshold T , to effectively designate the
attendance or absence of the feature in a subset. The proposed
methodology in this paper follows the second option, i.e., real-
value representation of features and subsequent mapping.

With each reduction cut, the most irrelevant parts of the
genotype are removed, and the optimization continues on the
remaining solutions. Irrelevant genes are removed, but the se-
quence and the values of the remaining genes stay unchanged.
A brief graphical demonstration is provided on the right side of
Fig. 1 as follows: First, random trial solutions are initialized,
bearing in mind that the problem’s dimension follows the
number of features in a dataset. Next, the optimization process
using dynamic genotype reduction is started, where the jDE
operators are applied to dynamically change the genotype, and
the trial solutions are evaluated against the fitness function f
accordingly. After each optimization generation, a simple test
to verify whether (1) the dynamic genotype change needs to be
executed, or (2) ending criteria are reached, is performed. It is
worth mentioning that the genotype changing is only carried
out when the number of generations equals the pre-defined
genotype changing margins M = {m1,m2, ...,mn}. Here, n
represents the number of genotype cuts. After the complete
optimization process, the best solution is finally reconstructed
and returned to the user.

B. Dynamic genotype reductions
The dynamic genotype reductions are executed as follows:

first, the W best performing solutions are selected, which are
in the next step exploited to vote the F worst features (both the

W best performing solutions and F least performing solutions
are control parameters). The voting rule here is set as: whether
the feature is present in a particular solution, it gets a vote
from that solutions. In this way, W best solutions give votes
to those features that are present in those solutions. Features
with the least votes then represent the features that are least
common in best performing feature sets and are considered as
the features that make the FS worse off. These are removed
from the further optimization process instantly. By removing
the less relevant features the genotype of the optimization
process reduces and further optimization process continues
with the narrowed search-space (Fig. 1).

C. F1-score statistical evaluation

Every solution of selected features is evaluated with the
built classifier of the CART decision tree on the training set
and evaluated on the validation set with F1-score. To prevent
the data leakage, the data is split into the training and the
validation set. Hence, classification instances used to evaluate
the solutions are never seen during the selection and classifier
training. F1-score is a classification measure that consolidates
both statistical precision and recall measures. It is calculated
as

F1 =
2 · precision · recall
precision+ recall

, (4)

where precision = TP/(TP+FP) and recall = TP/(TP+
FN). Here, TP stands for true positives, FP for false
positives and FN for false negatives.

IV. EXPERIMENTS AND RESULTS

The purpose of experimental work was to determine whether
the proposed method is beneficial for a practical problem.
Control parameters during the experiments were set as des-
ignated in Tab. II. Genotype cuts were done at M =

TABLE II: Control parameters. Source: Authors.

Parameter Symbol Value
Genotype changing margins M 512, 256, 126, 64
Total no. of generations GEN 960
No. of best performing solutions W 50
Removal rate R 10 %
Initial crossover rate CR 0.8
Initial scaling factor F 1.0
No. of classification folds k 5
Training-validation split 50%-50%

[512, 256, 126, 64], total GEN = 960 generations; W = 50
best performing solutions vote for the removal of 10% of
features (R = 10 %); the arrhythmia detection dataset was
split into k = 5 folds to perform cross-validation. To prevent
data leakage, each fold was further split into training and
validation sets. N = 10 consecutive optimization runs were
executed, and the results of those runs were averaged. The
fitness function for evaluating the solution was f = 1 − F1,
so the minimization of f was pursued. All classification tasks
were implemented using the CART decision tree. Table III
shows the experimental results, with the accuracy and F1-score
classification metric on every fold, for three different methods:
(1) CART without FS (“CART”), (2) CART with wrapper-
based EvoPreprocess jDE-FS (“EvoFS”) and (3) CART with
dynamic genotype reduction jDE-FS (“DynFS”).

TABLE III: Classification results. Highest values are in bold.
Source: Authors.

CART EvoFS DynFS

Fold Acc F1 Acc F1 Acc F1

1 96.70 66.67 98.90 90.91 98.90 90.91
2 95.60 50.00 95.60 60.00 95.60 50.00
3 94.44 44.44 96.67 66.67 95.56 50.00
4 97.78 80.00 93.33 57.14 95.56 60.00
5 93.33 50.00 95.56 33.33 95.56 60.00

Mean 95.57 58.22 96.01 61.61 96.23 62.18
Std. dev. 0.016 0.132 0.018 0.185 0.013 0.150
Avg. rank 2.2 2.2 1.4 1.8 1.4 1.6

As the results show, the DynFS achieved the best results
in three out of five folds accuracy-wise and in two out of
five folds F1-score-wise. Overall, it also achieved the best
means in accuracy and F1-score, with the smallest standard
deviation (which means that the results are more robust). Also,
the average ranks are the best for both accuracy and F1-score.

A more in-depth look into the results shows the following
phenomenon: in all fivefold, the EvoFS consistently chooses
a single feature – the J vector angle as most important, while
existence of the diphasic derivation of T wave in channel DI
was the next most frequently chosen feature. On the other

hand, the DynFS extended the consistent choices of features
from the previously mentioned two, with R wave average
width in V4 channel and S’ wave in DII channel.

V. CONCLUSION

The paper presents the dynamic genotype reduction mech-
anism for the wrapper-based feature selection optimization
problem. The results show that the periodic reductions of the
genotype result in superiority, compared to similar optimiza-
tion techniques, without the genotype reductions implemented.
The idea of shrinking the search space seems as very promis-
ing to be exploited during the optimization process, to skip
the least beneficial search space parts.

Although there are many practical questions with the pro-
posed approach, which should be addressed in the future
– namely, the reduction strategy, the reduction frequency
(changing margins) and reduction capacities (how much of
the search space should be removed from the optimization
process), the DynFS might become a serious candidate for
preprocessing large-scale datasets.

ACKNOWLEDGMENT

This research was funded by the Slovenian Research Agency
(research cores funding Nos. P2-0057 and P5-0027).

REFERENCES

[1] S. Karakatič, “EvoPreprocess–Data preprocessing framework with
nature-inspired optimization algorithms,” Mathematics, vol. 8, no. 6, p.
900, 2020.

[2] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and I. Fister Jr., “NiaPy:
Python microframework for building nature-inspired algorithms,” Jour-
nal of Open Source Software, vol. 3, no. 23, p. 613, 2018.

[3] D. Fister, I. Fister, T. Jagrič, I. Fister, and J. Brest, “A novel self-adaptive
differential evolution for feature selection using threshold mechanism,”
in Proceedings of the 2018 IEEE Symposium Series on Computational
Intelligence, SSCI 2018. IEEE, 2019, pp. 17–24.

[4] A. Wang, N. An, G. Chen, L. Li, and G. Alterovitz, “Accelerating
wrapper-based feature selection with K-nearest-neighbor,” Knowledge-
Based Systems, vol. 83, pp. 81–91, 2015.

[5] J. Leng, C. Valli, and L. Armstrong, “A Wrapper-Based Feature Se-
lection for Analysis of Large Data Sets,” Proceedings of 2010 3rd
International Conference on Computer and Electrical Engineerings
(ICCEE 2010), no. 2010, pp. 167–170, 2010.

[6] R. Wald, T. M. Khoshgoftaar, and A. Napolitano, “Stability of filter- and
wrapper-based feature subset selection,” in Proceedings - International
Conference on Tools with Artificial Intelligence, ICTAI. IEEE, 2013,
pp. 374–380.

[7] R. Bellman, “Curse of dimensionality,” Adaptive control processes: a
guided tour. Princeton, NJ, vol. 3, p. 2, 1961.

[8] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[9] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 6, pp. 646–657, dec 2006.

[10] L. Brezočnik, I. Fister, and V. Podgorelec, “Swarm intelligence algo-
rithms for feature selection: A review,” Applied Sciences (Switzerland),
vol. 8, no. 9, p. 1521, 2018.

[11] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A Survey on Evolution-
ary Computation Approaches to Feature Selection,” IEEE Transactions
on Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[12] Y. Xue, B. Xue, and M. Zl, “Self-Adaptive particle swarm optimization
for large-scale feature selection in classification,” ACM Transactions on
Knowledge Discovery from Data, vol. 13, no. 5, pp. 1–27, 2019.

